Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

β1-Na+,K+-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury

Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with diverse disorders and characterized by disruption of the alveolar-capillary barrier, leakage of edema fluid into the lung, and substantial inflammation leading to acute respiratory failure. Gene therapy is a potentially powerful approach to treat ALI/ARDS through repair of alveolar epithelial function. Herein, we show that delivery of a plasmid expressing β1-subunit of the Na+,K+-ATPase (β1-Na+,K+-ATPase) alone or in combination with epithelial sodium channel (ENaC) α1-subunit using electroporation not only protected from subsequent lipopolysaccharide (LPS)-mediated lung injury, but also treated injured lungs. However, transfer of α1-subunit of ENaC (α1-ENaC) alone only provided protection benefit rather than treatment benefit although alveolar fluid clearance had been remarkably enhanced. Gene transfer of β1-Na+,K+-ATPase, but not α1-ENaC, not only enhanced expression of tight junction protein zona occludins-1 (ZO-1) and occludin both in cultured cells and in mouse lungs, but also reduced pre-existing increase of lung permeability in vivo. These results demonstrate that gene transfer of β1-Na+,K+-ATPase upregulates tight junction formation and therefore treats lungs with existing injury, whereas delivery of α1-ENaC only maintains pre-existing tight junction but not for generation. This indicates that the restoration of epithelial/endothelial barrier function may provide better treatment of ALI/ARDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Matthay MA, Ware LB, Zimmerman GA . The acute respiratory distress syndrome. J Clin Invest 2012; 122: 2731–2740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu KD, Matthay MA . Advances in critical care for the nephrologist: acute lung injury/ARDS. Clin J Am Soc Nephrol 2008; 3: 578–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mutlu GM, Adir Y, Jameel M, Akhmedov AT, Welch L, Dumasius V et al. Interdependency of beta-adrenergic receptors and CFTR in regulation of alveolar active Na+ transport. Circ Res 2005; 96: 999–1005.

    Article  CAS  PubMed  Google Scholar 

  4. Dumasius V, Sznajder JI, Azzam ZS, Boja J, Mutlu GM, Maron MB et al. b2-Adrenergic receptor overexpression increases alveolar fluid clearance and responsiveness to endogenous catecholamines in rats. Circ Res 2001; 89: 907–914.

    Article  CAS  PubMed  Google Scholar 

  5. Mutlu GM, Machado-Aranda D, Norton JE, Bellmeyer A, Urich D, Zhou R et al. Electroporation-mediated gene transfer of the Na+,K+-ATPase rescues endotoxin-induced lung injury. Am J Respir Crit Care Med 2007; 176: 582–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Factor P, Dumasius V, Saldias F, Brown LA, Sznajder JI . Adenovirus-mediated transfer of an Na+/K+-ATPase beta1 subunit gene improves alveolar fluid clearance and survival in hyperoxic rats. Hum Gene Ther 2000; 11: 2231–2242.

    Article  CAS  PubMed  Google Scholar 

  7. Stern M, Ulrich K, Robinson C, Copeland J, Griesenbach U, Masse C et al. Pretreatment with cationic lipid-mediated transfer of the Na+K+-ATPase pump in a mouse model in vivo augments resolution of high permeability pulmonary oedema. Gene Ther 2000; 7: 960–966.

    Article  CAS  PubMed  Google Scholar 

  8. Mutlu GM, Sznajder JI . Mechanisms of pulmonary edema clearance. Am J Physiol Lung Cell Mol Physiol 2005; 289: L685–L695.

    Article  CAS  PubMed  Google Scholar 

  9. Dean DA . Electroporation of the vasculature and the lung. DNA Cell Biol 2003; 22: 797–806.

    Article  CAS  PubMed  Google Scholar 

  10. Dean DA, Machado-Aranda D, Blair-Parks K, Yeldandi AV, Young JL . Electroporation as a method for high-level nonviral gene transfer to the lung. Gene Ther 2003; 10: 1608–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gazdhar A, Bilici M, Pierog J, Ayuni EL, Gugger M, Wetterwald et al. In vivo electroporation and ubiquitin promoter—a protocol for sustained gene expression in the lung. J Gene Med 2006; 8: 910–918.

    Article  CAS  PubMed  Google Scholar 

  12. Pringle IA, McLachlan G, Collie DD, Sumner-Jones SG, Lawton AE, Tennant P et al. Electroporation enhances reporter gene expression following delivery of naked plasmid DNA to the lung. J Gene Med 2007; 9: 369–380.

    Article  CAS  PubMed  Google Scholar 

  13. Machado-Aranda D, Adir Y, Young JL, Briva A, Budinger GR, Yeldandi AV et al. Gene transfer of the Na+,K+-ATPase beta1 subunit using electroporation increases lung liquid clearance. Am J Respir Crit Care Med 2005; 171: 204–211.

    Article  PubMed  Google Scholar 

  14. Mutlu GM, Machado-Aranda D, Norton JE, Bellmeyer A, Urich D, Zhou R et al. Electroporation-mediated gene transfer of the Na+,K+ -ATPase rescues endotoxin-induced lung injury. Am J Respir Crit Care Med 2007; 176: 582–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 1996; 12: 325–328.

    Article  CAS  PubMed  Google Scholar 

  16. Mutlu GM, Dumasius V, Burhop J, McShane PJ, Meng FJ, Welch L et al. Upregulation of alveolar epithelial active Na+ transport is dependent on beta2-adrenergic receptor signaling. Circ Res 2004; 94: 1091–1100.

    Article  CAS  PubMed  Google Scholar 

  17. Rajasekaran SA, Rajasekaran AK . Na, K-ATPase and epithelial tight junctions. Front Biosci 2009; 14: 2130–2148.

    Article  CAS  Google Scholar 

  18. Adir Y, Factor P, Dumasius V, Ridge KM, Sznajder JI . Na,K-ATPase gene transfer increases liquid clearance during ventilation-induced lung injury. Am J Respir Crit Care Med 2003; 168: 1445–1448.

    Article  PubMed  Google Scholar 

  19. Factor P, Mendez M, Mutlu GM, Dumasius V . Acute hyperoxic lung injury does not impede adenoviral-mediated alveolar gene transfer. Am J Respir Crit Care Med 2002; 165: 521–526.

    Article  PubMed  Google Scholar 

  20. Bardou O, Prive A, Migneault F, Roy-Camille K, Dagenais A, Berthiaume Y et al. K(+) channels regulate ENaC expression via changes in promoter activity and control fluid clearance in alveolar epithelial cells. Biochim Biophys Acta 2012; 1818: 1682–1690.

    Article  CAS  PubMed  Google Scholar 

  21. Deng W, Li CY, Tong J, Zhang W, Wang DX . Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury. Respir Res 2012; 13: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adir Y, Welch LC, Dumasius V, Factor P, Sznajder JI, Ridge KM . Overexpression of the Na-K-ATPase alpha2-subunit improves lung liquid clearance during ventilation-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2008; 294: L1233–L1237.

    Article  CAS  PubMed  Google Scholar 

  23. Mutlu GM, Factor P . Alveolar epithelial beta2-adrenergic receptors. Am J Respir Cell Mol Biol 2008; 38: 127–134.

    Article  CAS  PubMed  Google Scholar 

  24. Ulrich K, Stern M, Goddard ME, Williams J, Zhu J, Dewar et al. Keratinocyte growth factor therapy in murine oleic acid-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2005; 288: L1179–L1192.

    Article  CAS  PubMed  Google Scholar 

  25. Bertorello AM, Ridge KM, Chibalin AV, Katz AI, Sznajder JI . Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells. Am J Physiol 1999; 276: L20–L27.

    CAS  PubMed  Google Scholar 

  26. Matthay MA, Folkesson HG, Clerici C . Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82: 569–600.

    Article  CAS  PubMed  Google Scholar 

  27. Gao Smith F, Perkins GD, Gates S, Young D, McAuley DF, Tunnicliffe W et al. Effect of intravenous beta-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet 2012; 379: 229–235.

    Article  PubMed  Google Scholar 

  28. Matthay MA, Brower RG, Carson S, Douglas IS, Eisner M, Hite D et al. Randomized, placebo-controlled clinical trial of an aerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 2011; 184: 561–568.

    Article  CAS  PubMed  Google Scholar 

  29. Rajasekaran SA, Beyenbach KW, Rajasekaran AK . Interactions of tight junctions with membrane channels and transporters. Biochim Biophys Acta 2008; 1778: 757–769.

    Article  CAS  PubMed  Google Scholar 

  30. Krupinski T, Beitel GJ . Unexpected roles of the Na-K-ATPase and other ion transporters in cell junctions and tubulogenesis. Physiology (Bethesda) 2009; 24: 192–201.

    CAS  Google Scholar 

  31. Paul SM, Palladino MJ, Beitel GJ . A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 2007; 134: 147–155.

    Article  CAS  PubMed  Google Scholar 

  32. Cibrian-Uhalte E, Langenbacher A, Shu X, Chen JN, Abdelilah-Seyfried S . Involvement of zebrafish Na+,K+ ATPase in myocardial cell junction maintenance. J Cell Biol 2007; 176: 223–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Violette MI, Madan P, Watson AJ . Na+/K+ -ATPase regulates tight junction formation and function during mouse preimplantation development. Dev Biol 2006; 289: 406–419.

    Article  CAS  PubMed  Google Scholar 

  34. Rajasekaran SA, Palmer LG, Moon SY, Peralta Soler A, Apodaca GL, Harper JF et al. Na,K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol Biol Cell 2001; 12: 3717–3732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajasekaran SA, Barwe SP, Gopal J, Ryazantsev S, Schneeberger EE, Rajasekaran AK . Na-K-ATPase regulates tight junction permeability through occludin phosphorylation in pancreatic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2007; 292: G124–G133.

    Article  CAS  PubMed  Google Scholar 

  36. Rajasekaran SA, Hu J, Gopal J, Gallemore R, Ryazantsev S, Bok D et al. Na,K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Physiol Cell Physiol 2003; 284: C1497–C1507.

    Article  CAS  PubMed  Google Scholar 

  37. Nunbhakdi-Craig V, Machleidt T, Ogris E, Bellotto D, White CL 3rd, Sontag E . Protein phosphatase 2 A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol 2002; 158: 967–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao J, He L, Lin G, Hu C, Dong R, Zhang J et al. Cap-dependent translation initiation factor, eIF4E, is the target for Ouabain-mediated inhibition of HIF-1alpha. Biochem Pharmacol 2014; 89: 20–30.

    Article  CAS  PubMed  Google Scholar 

  39. Larre I, Lazaro A, Contreras RG, Balda MS, Matter K, Flores-Maldonado C et al. Ouabain modulates epithelial cell tight junction. Proc Natl Acad Sci USA 2010; 107: 11387–11392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajasekaran SA, Palmer LG, Quan K, Harper JF, Ball WJ Jr, Bander NH et al. Na,K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility. Mol Biol Cell 2001; 12: 279–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Padilla-Benavides T, Roldan ML, Larre I, Flores-Benitez D, Villegas-Sepulveda N, Contreras RG et al. The polarized distribution of Na+,K+-ATPase: role of the interaction between {beta} subunits. Mol Biol Cell 2010; 21: 2217–2225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tokhtaeva E, Sachs G, Souda P, Bassilian S, Whitelegge JP, Shoshani L et al. Epithelial junctions depend on intercellular trans-interactions between the Na,K-ATPase beta(1) subunits. J Biol Chem 2011; 286: 25801–25812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tokhtaeva E, Sachs G, Sun H, Dada LA, Sznajder JI, Vagin O . Identification of the amino acid region involved in the intercellular interaction between the beta1 subunits of Na+/K+ -ATPase. J Cell Sci 2012; 125: 1605–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thevananther S, Kolli AH, Devarajan P . Identification of a novel ankyrin isoform (AnkG190) in kidney and lung that associates with the plasma membrane and binds alpha-Na, K-ATPase. J Biol Chem 1998; 273: 23952–23958.

    Article  CAS  PubMed  Google Scholar 

  45. Vagin O, Dada LA, Tokhtaeva E, Sachs G . The Na-K-ATPase alpha(1)beta(1) heterodimer as a cell adhesion molecule in epithelia. Am J Physiol Cell Physiol 2012; 302: C1271–C1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vagin O, Tokhtaeva E, Yakubov I, Shevchenko E, Sachs G . Inverse correlation between the extent of N-glycan branching and intercellular adhesion in epithelia. Contribution of the Na,K-ATPase beta1 subunit. J Biol Chem 2008; 283: 2192–2202.

    Article  CAS  PubMed  Google Scholar 

  47. Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA . Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol 2011; 179: 1081–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin X, Dean DA . Gene therapy for ALI/ARDS. Crit Care Clin 2011; 27: 705–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emr BM, Roy S, Kollisch-Singule M, Gatto LA, Barravecchia M, Lin X et al. Electroporation mediated gene delivery of Na+,K+-ATPase and ENaC subunits to the lung attenuates acute respiratory distress syndrome in a Two-Hit Porcine Model. Shock 2014; 43: 16–23.

    Article  Google Scholar 

  50. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26: 5896–5903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heller LC, Heller R . Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 2010; 10: 312–317.

    Article  CAS  PubMed  Google Scholar 

  52. Lin X, Sime PJ, Xu H, Williams MA, LaRussa L, Georas SN et al. Yin yang 1 is a novel regulator of pulmonary fibrosis. Am J Respir Crit Care Med 2011; 183: 1689–1697.

    Article  CAS  PubMed  Google Scholar 

  53. Baluk P, Thurston G, Murphy TJ, Bunnett NW, McDonald DM . Neurogenic plasma leakage in mouse airways. Br J Pharmacol 1999; 126: 522–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mammoto A, Mammoto T, Kanapathipillai M, Wing Yung C, Jiang E, Jiang et al. Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nat Commun 2013; 4: 1759.

    Article  PubMed  Google Scholar 

  55. Standiford TJ, Kunkel SL, Lukacs NW, Greenberger MJ, Danforth JM, Kunkel RG et al. Macrophage inflammatory protein-1 alpha mediates lung leukocyte recruitment, lung capillary leak, and early mortality in murine endotoxemia. J Immunol 1995; 155: 1515–1524.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Institutes of Health grants HL81148, HL92801 and HL120521 (DD) and T32 HL66988 (XL). We thank Steve N Georas (University of Rochester, Rochester, NY, USA) for 16HBE14o- cells and Fabeha Fazal (University of Rochester, Rochester, NY, USA) for HPAEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Dean.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Barravecchia, M., Kothari, P. et al. β1-Na+,K+-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury. Gene Ther 23, 489–499 (2016). https://doi.org/10.1038/gt.2016.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.19

This article is cited by

Search

Quick links