Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa

Abstract

The X-linked RP3 gene codes for the ciliary protein RPGR and accounts for over 10% of inherited retinal degenerations. The critical RPGR-ORF15 splice variant contains a highly repetitive purine-rich linker region that renders it unstable and difficult to adapt for gene therapy. To test the hypothesis that the precise length of the linker region is not critical for function, we evaluated whether adeno-associated virus-mediated replacement gene therapy with a human ORF15 variant containing in-frame shortening of the linker region could reconstitute RPGR function in vivo. We delivered human RPGR-ORF15 replacement genes with deletion of most (314 codons, ‘short form’) or 1/3 (126 codons, ‘long form’) of the linker region to Rpgr null mice. Human RPGR-ORF15 expression was detected post treatment with both forms of ORF15 transgenes. However, only the long form correctly localized to the connecting cilia and led to significant functional and morphological rescue of rods and cones. Thus the highly repetitive region of RPGR is functionally important but that moderate shortening of its length, which confers the advantage of added stability, preserves its function. These findings provide a theoretical basis for optimizing replacement gene design in clinical trials for X-linked RP3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bader I, Brandau O, Achatz H, Apfelstedt-Sylla E, Hergersberg M, Lorenz B et al. X-linked retinitis pigmentosa: RPGR mutations in most families with definite X linkage and clustering of mutations in a short sequence stretch of exon ORF15. Invest Ophthalmol Vis Sci 2003; 44: 1458–1463.

    Article  PubMed  Google Scholar 

  2. Pelletier V, Jambou M, Delphin N, Zinovieva E, Stum M, Gigarel N et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling. Hum Mutat 2007; 28: 81–91.

    Article  CAS  PubMed  Google Scholar 

  3. Branham K, Othman M, Brumm M, Karoukis AJ, Atmaca-Sonmez P, Yashar BM et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci 2012; 53: 8232–8237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG et al. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54: 1411–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hong DH, Pawlyk BS, Shang J, Sandberg MA, Berson EL, Li T . A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci USA 2000; 97: 3649–3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sandberg MA, Rosner B, Weigel-DiFranco C, Dryja TP, Berson EL . Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Invest Ophthalmol Vis Sci 2007; 48: 1298–1304.

    Article  PubMed  Google Scholar 

  7. Vervoort R, Lennon A, Bird AC, Tulloch B, Axton R, Miano MG et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 2000; 25: 462–466.

    Article  CAS  PubMed  Google Scholar 

  8. Hong DH, Pawlyk B, Sokolov M, Strissel KJ, Yang J, Tulloch B et al. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 2003; 44: 2413–2421.

    Article  PubMed  Google Scholar 

  9. Vervoort R, Wright AF . Mutations of RPGR in X-linked retinitis pigmentosa (RP3). Hum Mutat 2002; 19: 486–500.

    Article  CAS  PubMed  Google Scholar 

  10. Breuer DK, Yashar BM, Filippova E, Hiriyanna S, Lyons RH, Mears AJ et al. A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 2002; 70: 1545–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharon D, Sandberg MA, Rabe VW, Stillberger M, Dryja TP, RP2 Berson EL . and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. Am J Hum Genet 2003; 73: 1131–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boylan JP, Wright AF . Identification of a novel protein interacting with RPGR. Hum Mol Genet 2000; 9: 2085–2093.

    Article  CAS  PubMed  Google Scholar 

  13. Roepman R, Bernoud-Hubac N, Schick DE, Maugeri A, Berger W, Ropers H-H et al. The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum Mol Genet 2000; 9: 2095–2105.

    Article  CAS  PubMed  Google Scholar 

  14. Hong DH, Yue G, Adamian M, Li T . Retinitis pigmentosa GTPase regulator (RPGR)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem 2001; 276: 12091–12099.

    Article  CAS  PubMed  Google Scholar 

  15. Hong DH, Li T . Complex expression pattern of RPGR reveals a role for purine-rich exonic splicing enhancers. Invest Ophthalmol Vis Sci 2002; 43: 3373–3382.

    PubMed  Google Scholar 

  16. Brunner S, Skosyrski S, Kirschner-Schwabe R, Knobeloch KP, Neidhardt J, Feil S et al. Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds. Invest Ophthalmol Vis Sci 2010; 51: 1106–1115.

    Article  PubMed  Google Scholar 

  17. Huang WC, Wright AF, Roman AJ, Cideciyan AV, Manson FD, Gewaily DY et al. RPGR-associated retinal degeneration in human X-linked RP and a murine model. Invest Ophthalmol Vis Sci 2012; 53: 5594–5608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson DA, Khan NW, Othman MI, Chang B, Jia L, Grahek G et al. Rd9 is a naturally occurring mouse model of a common form of retinitis pigmentosa caused by mutations in RPGR-ORF15. PLoS One 2012; 7: e35865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hong DH, Pawlyk BS, Adamian M, Sandberg MA, Li T . A single, abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest Ophthalmol Vis Sci 2005; 46: 435–441.

    Article  PubMed  Google Scholar 

  20. Jacobi FK, Karra D, Broghammer M, Blin N, Pusch CM . Mutational risk in highly repetitive exon ORF15 of the RPGR multidisease gene is not associated with haplotype background. Int J Mol Med 2005; 16: 1175–1178.

    CAS  PubMed  Google Scholar 

  21. Karra D, Jacobi FK, Broghammer M, Blin N, Pusch CM . Population haplotypes of exon ORF15 of the retinitis pigmentosa GTPase regulator gene in Germany: implications for screening for inherited retinal disorders. Mol Diagn Ther 2006; 10: 115–123.

    Article  CAS  PubMed  Google Scholar 

  22. Khani SC, Pawlyk BS, Bulgakov OV, Kasperek E, Young JE, Adamian M et al. AAV-mediated expression targeting of rod and cone photoreceptors with a human rhodopsin kinase promoter. Invest Ophthalmol Vis Sci 2007; 48: 3954–3961.

    Article  PubMed  Google Scholar 

  23. Sun X, Pawlyk B, Xu X, Liu X, Bulgakov OV, Adamian M . Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Therapy 2010; 17: 117–131.

    Article  CAS  PubMed  Google Scholar 

  24. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy 2008; 15: 463–467.

    Article  CAS  PubMed  Google Scholar 

  26. Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T . Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. J Cell Biol 2002; 159: 431–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Demirci FY, Rigatti BW, Wen G, Radak AL, Mah TS, Baic CL et al. X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet 2002; 70: 1049–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Z, Peachey NS, Moshfeghi DM, Thirumalaichary S, Chorich L, Shugart YY et al. Mutations in the RPGR gene cause X-linked cone dystrophy. Hum Mol Genet 2002; 11: 605–611.

    Article  CAS  PubMed  Google Scholar 

  29. Sandberg MA, Weigel-DiFranco C, Rosner B, Berson EL . The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1996; 37: 1693–1698.

    CAS  PubMed  Google Scholar 

  30. Pang JJ, Lei L, Dai X, Shi W, Liu X, Dinculescu A et al. AAV-mediated gene therapy in mouse models of recessive retinal degeneration. Curr Mol Med 2012; 12: 316–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pawlyk BS, Bulgakov OV, Liu X, Xu X, Adamian M, Sun X et al. Replacement gene therapy with a human RPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. Hum Gene Ther 2010; 21: 993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, Sandberg MA et al. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci 2005; 46: 3039–3045.

    Article  PubMed  Google Scholar 

  33. Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet 2009; 18: 2099–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306–310.

    Article  CAS  PubMed  Google Scholar 

  35. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  36. Alexander JJ, Umino Y, Everhart D, Chang B, Min SH, Li Q et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med 2007; 13: 685–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beltran WA, Cideciyan AV, Lewin AS, Iwabe S, Khanna H, Sumaroka A et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci USA 2012; 109: 2132–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 2010; 19: 2581–2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lheriteau E, Libeau L, Stieger K, Deschamps JY, Mendes-Madeira A, Provost N et al. The RPGRIP1-deficient dog, a promising canine model for gene therapy. Mol Vis 2009; 15: 349–361.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  41. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 15112–15117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maclaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 2014; 383: 1129–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu Z, Hiriyanna S, Qian H, Mookherjee S, Campos MM, Gao C et al. A long-term efficacy study of gene replacement therapy for RPGR-associated retinal degeneration. Hum Mol Genet 2015; 24: 3956–3970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002; 8: 253–261.

    Article  CAS  PubMed  Google Scholar 

  46. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Clarke G, Collins RA, Leavitt BR, Andrews DF, Hayden MR, Lumsden CJ et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 2000; 406: 195–199.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Jeng-Shin Lee at the Research Vector Core at Harvard Medical School for AAV vector packaging, and Drs Peter Colosi and Zhijian Wu at the National Eye Institute for helpful discussions. This work was supported by National Eye Institute grant EY10581, NEI core grant for Vision Research (5P30EY14104), the Foundation Fighting Blindness, the Foundation for Retina Research, the Massachusetts Lions Eye Research Fund and by grants from the European Union (AAVEYE), the UK Department of Health, National Institute of Health Research BMRC for Ophthalmology and UK Fight for Sight.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B S Pawlyk or T Li.

Ethics declarations

Competing interests

RRA and AJS are co-founders of Athena Vision Limited with a commercial interest in gene therapy for X-linked RP. The remaining authors declare no conflict of interest.

Additional information

Note added in proof

While this manuscript was under review, the ORF15 cDNA used to treat the canine model of RPGR was found to have undergone multiple deletions and other types of changes, supporting the view that the original 'full-length' RPGR-ORF15 is prone to spontaneous mutations (Deng WT et al. Stability and safety of an AAV vector for treating RPGR-ORF15 X-linked retinitis pigmentosa. Hum Gene Ther 2015; 26: 593-602).

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawlyk, B., Bulgakov, O., Sun, X. et al. Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther 23, 196–204 (2016). https://doi.org/10.1038/gt.2015.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.93

This article is cited by

Search

Quick links