Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ameliorating pathogenesis by removing an exon containing a missense mutation: a potential exon-skipping therapy for laminopathies

Subjects

Abstract

Exon skipping, as a therapy to restore a reading frame or switch protein isoforms, is under clinical trial. We hypothesised that removing an in-frame exon containing a mutation could also improve pathogenic phenotypes. Our model is laminopathies: incurable tissue-specific degenerative diseases associated with LMNA mutations. LMNA encodes A-type lamins, that together with B-type lamins, form the nuclear lamina. Lamins contain an alpha-helical central rod domain composed of multiple heptad repeats. Eliminating LMNA exon 3 or 5 removes six heptad repeats, so shortens, but should not otherwise significantly alter, the alpha-helix. Human Lamin A or Lamin C with a deletion corresponding to amino acids encoded by exon 5 (Lamin A/C-Δ5) localised normally in murine lmna-null cells, rescuing both nuclear shape and endogenous Lamin B1/emerin distribution. However, Lamin A carrying pathogenic mutations in exon 3 or 5, or Lamin A/C-Δ3, did not. Furthermore, Lamin A/C-Δ5 was not deleterious to wild-type cells, unlike the other Lamin A mutants including Lamin A/C-Δ3. Thus Lamin A/C-Δ5 function as effectively as wild-type Lamin A/C and better than mutant versions. Antisense oligonucleotides skipped LMNA exon 5 in human cells, demonstrating the possibility of treating certain laminopathies with this approach. This proof-of-concept is the first to report the therapeutic potential of exon skipping for diseases arising from missense mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dominski Z, Kole R . Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci USA 1993; 90: 8673–8677.

    Article  CAS  Google Scholar 

  2. Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord 1999; 9: 330–338.

    Article  CAS  Google Scholar 

  3. Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013; 74: 637–647.

    Article  CAS  Google Scholar 

  4. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011; 378: 595–605.

    Article  CAS  PubMed  Google Scholar 

  5. Muntoni F, Torelli S, Ferlini A . Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003; 2: 731–740.

    Article  CAS  Google Scholar 

  6. Hua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011; 478: 123–126.

    Article  CAS  PubMed  Google Scholar 

  7. Kole R, Krainer AR, Altman S . RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11: 125–140.

    Article  CAS  PubMed  Google Scholar 

  8. Vanderplanck C, Ansseau E, Charron S, Stricwant N, Tassin A, Laoudj-Chenivesse D et al. The FSHD atrophic myotube phenotype is caused by DUX4 expression. PloS one 2011; 6: e26820.

    Article  CAS  PubMed  Google Scholar 

  9. Worman HJ, Bonne G . "Laminopathies": a wide spectrum of human diseases. Exp Cell Res 2007; 313: 2121–2133.

    Article  CAS  PubMed  Google Scholar 

  10. Scharner J, Gnocchi VF, Ellis JA, Zammit PS . Genotype-phenotype correlations in laminopathies: how does fate translate? Biochem Soc Trans 2010; 38: 257–262.

    Article  CAS  Google Scholar 

  11. Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 1999; 21: 285–288.

    Article  CAS  Google Scholar 

  12. Stuurman N, Heins S, Aebi U . Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 1998; 122: 42–66.

    Article  CAS  Google Scholar 

  13. Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD . Nuclear lamins. Cold Spring Harb Perspect Biol 2010; 2: a000547.

    Article  CAS  PubMed  Google Scholar 

  14. Davidson PM, Lammerding J . Broken nuclei—lamins, nuclear mechanics, and disease. Trends Cell Biol 2014; 24: 247–256.

    Article  CAS  Google Scholar 

  15. Burke B, Stewart CL . Life at the edge: the nuclear envelope and human disease. Nat Rev Mol Cell Biol 2002; 3: 575–585.

    Article  CAS  Google Scholar 

  16. Scharner J, Brown CA, Bower M, Iannaccone ST, Khatri IA, Escolar D et al. Novel LMNA mutations in patients with Emery-Dreifuss muscular dystrophy and functional characterization of four LMNA mutations. Hum Mutat 2011; 32: 152–167.

    Article  CAS  Google Scholar 

  17. de Las Heras JI, Meinke P, Batrakou DG, Srsen V, Zuleger N, Kerr AR et al. Tissue specificity in the nuclear envelope supports its functional complexity. Nucleus 2013; 4: 460–477.

    Article  PubMed  Google Scholar 

  18. Scharner J, Lu HC, Fraternali F, Ellis JA, Zammit PS . Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies. Proteins 2014; 82: 904–915.

    Article  CAS  Google Scholar 

  19. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 2011; 3: 89ra58.

    CAS  Google Scholar 

  20. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 2012; 109: 16666–16671.

    Article  CAS  Google Scholar 

  21. Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ . Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 2009; 18: 241–247.

    Article  CAS  Google Scholar 

  22. Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 2011; 8: 688–694.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen TV, Gnocchi VF, Cohen JE, Phadke A, Liu H, Ellis JA et al. Defective skeletal muscle growth in lamin A/C-deficient mice is rescued by loss of Lap2alpha. Hum Mol Genet 2013; 22: 2852–2869.

    Article  CAS  PubMed  Google Scholar 

  24. Scaffidi P, Misteli T . Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 2005; 11: 440–445.

    Article  CAS  PubMed  Google Scholar 

  25. van Engelen BG, Muchir A, Hutchison CJ, van der Kooi AJ, Bonne G, Lammens M . The lethal phenotype of a homozygous nonsense mutation in the lamin A/C gene. Neurology 2005; 64: 374–376.

    Article  CAS  Google Scholar 

  26. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 1999; 147: 913–920.

    Article  CAS  PubMed  Google Scholar 

  27. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL . A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 2003; 423: 298–301.

    Article  CAS  Google Scholar 

  28. Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Genevieve D et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 2004; 13: 2493–2503.

    Article  CAS  Google Scholar 

  29. Shumaker DK, Lopez-Soler RI, Adam SA, Herrmann H, Moir RD, Spann TP et al. Functions and dysfunctions of the nuclear lamin Ig-fold domain in nuclear assembly, growth, and Emery-Dreifuss muscular dystrophy. Proc Natl Acad Sci USA 2005; 102: 15494–15499.

    Article  CAS  Google Scholar 

  30. Vaughan A, Alvarez-Reyes M, Bridger JM, Broers JL, Ramaekers FC, Wehnert M et al. Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J Cell Sci 2001; 114: 2577–2590.

    CAS  Google Scholar 

  31. Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS, Yang SH et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci USA 2012; 109: E423–E431.

    Article  CAS  Google Scholar 

  32. Fairbrother WG, Yeh RF, Sharp PA, Burge CB . Predictive identification of exonic splicing enhancers in human genes. Science 2002; 297: 1007–1013.

    Article  CAS  Google Scholar 

  33. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB . Systematic identification and analysis of exonic splicing silencers. Cell 2004; 119: 831–845.

    Article  CAS  Google Scholar 

  34. Reuter JS, Mathews DH . RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11: 129.

    Article  PubMed  Google Scholar 

  35. Aartsma-Rus A, van Vliet L, Hirschi M, Janson AA, Heemskerk H, de Winter CL et al. Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 2009; 17: 548–553.

    Article  CAS  PubMed  Google Scholar 

  36. Aartsma-Rus A, Houlleberghs H, van Deutekom JC, van Ommen GJ, t Hoen PA . Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing. Oligonucleotides 2010; 20: 69–77.

    Article  CAS  PubMed  Google Scholar 

  37. Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 2003; 12: 907–914.

    Article  CAS  PubMed  Google Scholar 

  38. Adams AM, Harding PL, Iversen PL, Coleman C, Fletcher S, Wilton SD . Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries. BMC Mol Biol 2007; 8: 57.

    Article  PubMed  Google Scholar 

  39. Monteiro MJ, Hicks C, Gu L, Janicki S . Determinants for intracellular sorting of cytoplasmic and nuclear intermediate filaments. J Cell Biol 1994; 127: 1327–1343.

    Article  CAS  PubMed  Google Scholar 

  40. Mical TI, Monteiro MJ . The role of sequences unique to nuclear intermediate filaments in the targeting and assembly of human lamin B: evidence for lack of interaction of lamin B with its putative receptor. J Cell Sci 1998; 111: 3471–3485.

    CAS  Google Scholar 

  41. Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM et al. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 2010; 285: 3487–3498.

    Article  CAS  Google Scholar 

  42. Ivorra C, Kubicek M, Gonzalez JM, Sanz-Gonzalez SM, Alvarez-Barrientos A, O'Connor JE et al. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev 2006; 20: 307–320.

    Article  CAS  PubMed  Google Scholar 

  43. Dreuillet C, Tillit J, Kress M, Ernoult-Lange M . In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res 2002; 30: 4634–4642.

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez JM, Navarro-Puche A, Casar B, Crespo P, Andres V . Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 2008; 183: 653–666.

    Article  CAS  PubMed  Google Scholar 

  45. Ozaki T, Saijo M, Murakami K, Enomoto H, Taya Y, Sakiyama S . Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 1994; 9: 2649–2653.

    CAS  Google Scholar 

  46. Puttaraju M, Jamison SF, Mansfield SG, Garcia-Blanco MA, Mitchell LG . Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat Biotechnol 1999; 17: 246–252.

    Article  CAS  Google Scholar 

  47. van Roon-Mom WM, Aartsma-Rus A . Overview on applications of antisense-mediated exon skipping. Methods Mol Biol 2012; 867: 79–96.

    Article  CAS  Google Scholar 

  48. Yin H, Moulton HM, Betts C, Seow Y, Boutilier J, Iverson PL et al. A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 2009; 18: 4405–4414.

    Article  CAS  Google Scholar 

  49. Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iverson P et al. Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 2008; 17: 3909–3918.

    Article  CAS  PubMed  Google Scholar 

  50. De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M, Kassouri N et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 2002; 70: 726–736.

    Article  CAS  PubMed  Google Scholar 

  51. Quijano-Roy S, Mbieleu B, Bonnemann CG, Jeannet PY, Colomer J, Clarke NF et al. De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 2008; 64: 177–186.

    Article  Google Scholar 

  52. Poitelon Y, Kozlov S, Devaux J, Vallat JM, Jamon M, Roubertoux P et al. Behavioral and molecular exploration of the AR-CMT2A mouse model Lmna (R298C/R298C). Neuromolecular Med 2012; 14: 40–52.

    Article  CAS  Google Scholar 

  53. Gnocchi VF, Scharner J, Huang Z, Brady K, Lee JS, White RB et al. Uncoordinated transcription and compromised muscle function in the lmna-null mouse model of Emery- Emery-Dreyfuss muscular dystrophy. PLoS One 2011; 6: e16651.

    Article  CAS  PubMed  Google Scholar 

  54. Ellis JA, Craxton M, Yates JR, Kendrick-Jones J . Aberrant intracellular targeting and cell cycle-dependent phosphorylation of emerin contribute to the Emery-Dreifuss muscular dystrophy phenotype. J Cell Sci 1998; 111: 781–792.

    CAS  Google Scholar 

  55. Strelkov SV, Schumacher J, Burkhard P, Aebi U, Herrmann H . Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. J Mol Biol 2004; 343: 1067–1080.

    Article  CAS  Google Scholar 

  56. Herrmann H, Aebi U . Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 2004; 73: 749–789.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Matthew Wood and his laboratory members for their advice. L302P human patient fibroblasts were a kind gift from Gisèle Bonne (Institute of Myology, Paris, France). JS and NF were partially funded by OPTISTEM (223098) through EU FP7. PSZ is also supported by The Muscular Dystrophy Campaign, the Medical Research Council (G1100193), Association Franςaise contre les Myopathies and BIODESIGN (262948-2) through EU FP7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P S Zammit.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharner, J., Figeac, N., Ellis, J. et al. Ameliorating pathogenesis by removing an exon containing a missense mutation: a potential exon-skipping therapy for laminopathies. Gene Ther 22, 503–515 (2015). https://doi.org/10.1038/gt.2015.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.8

This article is cited by

Search

Quick links