Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antitumoral gene-based strategy involving nitric oxide synthase type III overexpression in hepatocellular carcinoma

A Correction to this article was published on 28 March 2023

This article has been updated

Abstract

Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO) synthase type III (NOS-3) overexpression induces cell death in hepatoblastoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. The first-generation adenoviruses were designed to overexpress NOS-3 or green fluorescent protein, and luciferase complementary DNA under the regulation of murine alpha-fetoprotein (AFP) and Rous Sarcoma Virus (RSV) promoters, respectively. Both adenovirus and Hepa 1–6 cells were used for in vitro and in vivo experiments. Adenoviruses were administered through the tail vein 2 weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8, -9 and -3 activities in cultured Hepa 1–6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by Nω-nitro-l-arginine methyl ester hydrochloride, p53 and CD95 small interfering RNA. AFP-NOS-3/RSV-luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

References

  1. Lancaster JR Jr . A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1997; 1: 18–30.

    Article  CAS  PubMed  Google Scholar 

  2. Alderton WK, Cooper CE, Knowles RG . Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357: 593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burke AJ, Sullivan FJ, Giles FJ, Glynn SA . The yin and yang of nitric oxide in cancer progression. Carcinogenesis 2013; 34: 503–512.

    Article  CAS  PubMed  Google Scholar 

  4. Muntane J, la Mata MD . Nitric oxide and cancer. World J Hepatol 2010; 2: 337–344.

    Article  PubMed  PubMed Central  Google Scholar 

  5. McCarthy HO, Coulter JA, Robson T, Hirst DG . Gene therapy via inducible nitric oxide synthase: a tool for the treatment of a diverse range of pathological conditions. J Pharm Pharmacol 2008; 60: 999–1017.

    Article  CAS  PubMed  Google Scholar 

  6. Muntane J, De la Rosa AJ, Marin LM, Padillo FJ . Nitric oxide and cell death in liver cancer cells. Mitochondrion 2013; 13: 257–262.

    Article  CAS  PubMed  Google Scholar 

  7. Aguilar-Melero P, Ferrin G, Muntane J . Effects of nitric oxide synthase-3 overexpression on post-translational modifications and cell survival in HepG2 cells. J Proteomics 2012; 75: 740–755.

    Article  CAS  PubMed  Google Scholar 

  8. Bian K, Murad F . What is next in nitric oxide research? From cardiovascular system to cancer biology. Nitric Oxide 2014; 43: 3–7.

    Article  CAS  PubMed  Google Scholar 

  9. Hirst D, Robson T . Targeting nitric oxide for cancer therapy. J Pharm Pharmacol 2007; 59: 3–13.

    Article  CAS  PubMed  Google Scholar 

  10. Li CQ, Wogan GN . Nitric oxide as a modulator of apoptosis. Cancer Lett 2005; 226: 1–15.

    Article  CAS  PubMed  Google Scholar 

  11. Vieira H, Kroemer G . Mitochondria as targets of apoptosis regulation by nitric oxide. IUBMB Life 2003; 55: 613–616.

    Article  CAS  PubMed  Google Scholar 

  12. Siendones E, Fouad D, Abou-Elella AM, Quintero A, Barrera P, Muntane J . Role of nitric oxide in D-galactosamine-induced cell death and its protection by PGE1 in cultured hepatocytes. Nitric Oxide 2003; 8: 133–143.

    Article  CAS  PubMed  Google Scholar 

  13. Yasuda H, Nakayama K, Watanabe M, Suzuki S, Fuji H, Okinaga S et al. Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res 2006; 12: 6748–6757.

    Article  CAS  PubMed  Google Scholar 

  14. Siemens DR, Heaton JP, Adams MA, Kawakami J, Graham CH . Phase II study of nitric oxide donor for men with increasing prostate-specific antigen level after surgery or radiotherapy for prostate cancer. Urology 2009; 74: 878–883.

    Article  PubMed  Google Scholar 

  15. Takabuchi S, Hirota K, Nishi K, Oda S, Oda T, Shingu K et al. The inhibitory effect of sodium nitroprusside on HIF-1 activation is not dependent on nitric oxide-soluble guanylyl cyclase pathway. Biochem Biophys Res Commun 2004; 324: 417–423.

    Article  CAS  PubMed  Google Scholar 

  16. Bonavida B, Baritaki S, Huerta-Yepez S, Vega MI, Chatterjee D, Yeung K . Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide 2008; 19: 152–157.

    Article  CAS  PubMed  Google Scholar 

  17. Siendones E, Fouad D, Diaz-Guerra MJ, de la Mata M, Bosca L, Muntane J, PGE1-induced NO . reduces apoptosis by D-galactosamine through attenuation of NF-kappaB and NOS-2 expression in rat hepatocytes. Hepatology 2004; 40: 1295–1303.

    Article  CAS  PubMed  Google Scholar 

  18. Tong L, Wu S . The role of constitutive nitric-oxide synthase in ultraviolet B light-induced nuclear factor kappaB activity. J Biol Chem 2014; 289: 26658–26668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fleming I, Busse R . Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1–12.

    Article  CAS  PubMed  Google Scholar 

  20. Akazawa Y, Gores GJ . Death receptor-mediated liver injury. Semin Liver Dis 2007; 27: 327–338.

    Article  CAS  PubMed  Google Scholar 

  21. Seitz SJ, Schleithoff ES, Koch A, Schuster A, Teufel A, Staib F et al. Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway. Int J Cancer 2010; 126: 2049–2066.

    CAS  PubMed  Google Scholar 

  22. Razani B, Woodman SE, Lisanti MP . Caveolae: from cell biology to animal physiology. Pharmacol Rev 2002; 54: 431–467.

    Article  CAS  PubMed  Google Scholar 

  23. Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C, Godard C et al. S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 2011; 140: 2009–2018; 2018 e1-4.

    Article  CAS  PubMed  Google Scholar 

  24. Jeong WI, Park O, Radaeva S, Gao B . STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 2006; 44: 1441–1451.

    Article  CAS  PubMed  Google Scholar 

  25. Palanisamy AP, Cheng G, Sutter AG, Liu J, Lewin DN, Chao J et al. Adenovirus-mediated eNOS expression augments liver injury after ischemia/reperfusion in mice. PLoS One 2014; 9: e93304.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Matei V, Rodriguez-Vilarrupla A, Deulofeu R, Colomer D, Fernandez M, Bosch J et al. The eNOS cofactor tetrahydrobiopterin improves endothelial dysfunction in livers of rats with CCl4 cirrhosis. Hepatology 2006; 44: 44–52.

    Article  CAS  PubMed  Google Scholar 

  27. Mookerjee RP, Mehta G, Balasubramaniyan V, Mohamed Fel Z, Davies N, Sharma V et al. Hepatic dimethylarginine-dimethylaminohydrolase1 is reduced in cirrhosis and is a target for therapy in portal hypertension. J Hepatol 2015; 62: 325–331.

    Article  CAS  PubMed  Google Scholar 

  28. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 2011; 9: 171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Higaki K, Yano H, Kojiro M . Fas antigen expression and its relationship with apoptosis in human hepatocellular carcinoma and noncancerous tissues. Am J Pathol 1996; 149: 429–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee SH, Shin MS, Lee HS, Bae JH, Lee HK, Kim HS et al. Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Hum Pathol 2001; 32: 250–256.

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura M, Nagano H, Sakon M, Yamamoto T, Ota H, Wada H et al. Role of the Fas/FasL pathway in combination therapy with interferon-alpha and fluorouracil against hepatocellular carcinoma in vitro. J Hepatol 2007; 46: 77–88.

    Article  CAS  PubMed  Google Scholar 

  32. Hayden MA, Lange PA, Nakayama DK . Nitric oxide and cyclic guanosine monophosphate stimulate apoptosis via activation of the Fas-FasL pathway. J Surg Res 2001; 101: 183–189.

    Article  CAS  PubMed  Google Scholar 

  33. Martin LJ, Chen K, Liu Z . Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 2005; 25: 6449–6459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez R, Ferrin G, Aguilar-Melero P, Ranchal I, Linares CI, Bello RI et al. Targeting hepatoma using nitric oxide donor strategies. Antioxid Redox Signal 2013; 18: 491–506.

    Article  CAS  PubMed  Google Scholar 

  35. Xu W, Liu L, Charles IG . Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J 2002; 16: 213–215.

    Article  CAS  PubMed  Google Scholar 

  36. Ambs S, Merriam WG, Ogunfusika MO, Bennett WP, Ishibe N, Hussain SP et al. p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med 1998; 4: 1371–1376.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Dawson VL, Dawson TM, Snyder SH . Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 1994; 263: 687–689.

    Article  CAS  PubMed  Google Scholar 

  38. Pande K, Ueda R, Machemer T, Sathe M, Tsai V, Brin E et al. Cancer-induced expansion and activation of CD11b+ Gr-1+ cells predispose mice to adenoviral-triggered anaphylactoid-type reactions. Mol Ther 2009; 17: 508–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonin S, Diaz-Latoud C, Richard MJ, Ursini MV, Imbo A, Manero F et al. p53/T-antigen complex disruption in T-antigen transformed NIH3T3 fibroblasts exposed to oxidative stress: correlation with the appearance of a Fas/APO-1/CD95 dependent, caspase independent, necrotic pathway. Oncogene 1999; 18: 8011–8023.

    Article  CAS  PubMed  Google Scholar 

  40. Minana JB, Gomez-Cambronero L, Lloret A, Pallardo FV, Del Olmo J, Escudero A et al. Mitochondrial oxidative stress and CD95 ligand: a dual mechanism for hepatocyte apoptosis in chronic alcoholism. Hepatology 2002; 35: 1205–1214.

    Article  CAS  PubMed  Google Scholar 

  41. Reinehr R, Haussinger D . CD95 activation in the liver: ion fluxes and oxidative signaling. Arch Biochem Biophys 2007; 462: 124–131.

    Article  CAS  PubMed  Google Scholar 

  42. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR . Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 1982; 126: 131–138.

    Article  CAS  PubMed  Google Scholar 

  43. Jaffrey SR, Snyder SH . The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001; 2001: pl1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marcin Balcerzyk, Laura Fernández, Ángel Parrado and Isabel Fernández for their assistance in the PET/CT analysis ('Centro Nacional de Aceleradores' or CNA, Seville, Spain). This study was supported by the Instituto de Salud Carlos III (PS09/00185). CIBERehd was funded by the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Muntané.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

The original online version of this article was revised: In this article the wrong figure appeared as Fig. 5C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Rosa, Á., Rodríguez-Hernández, Á., González, R. et al. Antitumoral gene-based strategy involving nitric oxide synthase type III overexpression in hepatocellular carcinoma. Gene Ther 23, 67–77 (2016). https://doi.org/10.1038/gt.2015.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.79

Search

Quick links