Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Transient suppression of hepatocellular replication in the mouse liver following transduction with recombinant adeno-associated virus

Abstract

Recombinant vectors based on adeno-associated virus (AAV) are proving to be powerful tools for genetic manipulation of the liver, for both discovery and therapeutic purposes. The system can be used to deliver transgene cassettes for expression or, alternatively, DNA templates for genome editing via homologous recombination. The replicative state of target cells is known to influence the efficiency of these processes and knowledge of the host–vector interactions involved is required for optimally effective vector deployment. Here we show, for the first time in vivo, that in addition to the known effects of hepatocellular replication on AAV-mediated gene transfer, the vector itself exerts a potent, albeit transient suppressive effect on cell cycle progression that is relieved on a time course that correlates with the known rate of clearance of input single-stranded vector DNA. This finding requires further mechanistic investigation, delineates an excellent model system for such studies and further deepens our insight into the complexity of interactions between AAV vectors and the cell cycle in a clinically promising target tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sun B, Zhang H, Franco LM, Young SP, Schneider A, Bird A et al. Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 2005; 11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang H, Lillicrap D, Patarroyo-White S, Liu T, Qian X, Scallan CD et al. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood 2006; 108: 107–115.

    Article  CAS  PubMed  Google Scholar 

  3. Cunningham SC, Spinoulas A, Carpenter KH, Wilcken B, Kuchel PW, Alexander IE . AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal spfash mice. Mol Ther 2009; 17: 1340–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther 2011; 19: 876–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kok CY, Cunningham SC, Carpenter KH, Dane AP, Siew SM, Logan GJ et al. Adeno-associated virus-mediated rescue of neonatal lethality in argininosuccinate synthetase deficient mice. Mol Ther 2013; 21: 1823–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hinderer C, Bell P, Gurda BL, Wang Q, Louboutin JP, Zhu Y et al. Liver-directed gene therapy corrects cardiovascular lesions in feline mucopolysaccharidosis type I. Proc Natl Acad Sci USA 2014; 111: 14894–14899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nathwani AC, Tuddenham EG, Rangaraja S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357–2365.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371: 1994–2004.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 2011; 475: 217–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barzel A, Paulk NK, Shi Y, Huang Y, Chu K, Zhang F et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 2015; 517: 360–364.

    Article  CAS  PubMed  Google Scholar 

  11. Russell DW, Miller AD, Alexander IE . Adeno-associated virus vectors preferentially transduce cells in S phase. Proc Natl Acad Sci USA 1994; 91: 8915–8919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trobridge G, Hirata RK, Russell DW . Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum Gene Ther 2005; 16: 522–526.

    Article  CAS  PubMed  Google Scholar 

  13. Nakai H, Yant SR, Storm TA, Fuess S, Meuse L, Kay MA . Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 2001; 75: 6969–6976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Winocour E, Callaham MF, Huberman E . Perturbation of the cell cycle by adeno-associated virus. Virology 1988; 167: 393–399.

    CAS  PubMed  Google Scholar 

  15. Jurvansuu J, Raj K, Stasiak A, Beard P . Viral transport of DNA damage that mimics a stalled replication fork. J Virol 2005; 79: 569–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raj K, Ogston P, Beard P . Virus-mediated killing of cells that lack p53 activity. Nature 2001; 412: 914–917.

    Article  CAS  PubMed  Google Scholar 

  17. Fragkos M, Breuleux M, Clement N, Beard P . Recombinant adeno-associated viral vectors are deficient in provoking a DNA damage response. J Virol 2008; 82: 7379–7387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Francois A, Guilbaud M, Awedikian R, Chadeuf G, Moullier P, Salvetti A . The cellular TATA binding protein is required for rep-dependent replication of a minimal adeno-associated virus type 2 p5 element. J Virol 2005; 79: 11082–11094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC . Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 2003; 102: 480–488.

    Article  CAS  PubMed  Google Scholar 

  20. Dane AP, Cunningham SC, Graf NS, Alexander IE . Sexually dimorphic patterns of episomal rAAV genome persistence in the adult mouse liver and correlation with hepatocellular proliferation. Mol Ther 2009; 17: 1548–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duncan AW . Aneuploidy, polyploidy and ploidy reversal in the liver. Semin Cell Dev Biol 2013; 24: 347–356.

    Article  PubMed  Google Scholar 

  22. Cunningham SC, Dane AP, Spinoulas A, Alexander IE . Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol Ther 2008; 16: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD . The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol 2007; 81: 12936–12945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cervelli T, Palacios JA, Zentilin L, Mano M, Schwartz RA, Weitzman MD et al. Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins. J Cell Sci 2008; 121: 349–357.

    Article  CAS  PubMed  Google Scholar 

  25. Lentz TB, Samulski RJ . Insight into the mechanism of inhibition of recombinant adeno-associated virus by the Mre11/Rad50/Nbs1 complex. J Virol 2015; 89: 181–194.

    Article  PubMed  Google Scholar 

  26. Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ . Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 1999; 260: 712–717.

    Article  CAS  PubMed  Google Scholar 

  27. Huang WY, Aramburu J, Douglas PS, Izumo S . Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 2000; 6: 482–483.

    Article  CAS  PubMed  Google Scholar 

  28. Klein RL, Dayton RD, Leidenheimer NJ, Jansen K, Golde TE, Zweig RM . Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol Ther 2006; 13: 517–527.

    Article  CAS  PubMed  Google Scholar 

  29. Dane AP, Wowro SJ, Cunningham SC, Alexander IE . Comparison of gene transfer to the murine liver following intraperitoneal and intraportal delivery of hepatotropic AAV pseudo-serotypes. Gene Ther 2013; 20: 460–464.

    Article  CAS  PubMed  Google Scholar 

  30. Soames AR, Lavender D, Foster JR, Williams SM, Wheeldon EB . Image analysis of bromodeoxyuridine (BRDU) staining for measurement of S-phase in rat and mouse liver. J Histochem Cytochem 1994; 42: 939–944.

    Article  CAS  PubMed  Google Scholar 

  31. Magami Y, Azuma T, Inokuchi H, Kokuno S, Moriyasu F, Kawai K et al. Cell proliferation and renewal of normal hepatocytes and bile duct cells in adult mouse liver. Liver 2002; 22: 419–425.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Margot Latham (The Children’s Hospital at Westmead) for assistance in manuscript preparation. This work was supported by an Australian National Health and Medical Research Council (NHMRC) project grant (1008021). APD was supported by an NHMRC Postgraduate Research Scholarship (477110) and a Children’s Medical Research Institute PhD stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I E Alexander.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dane, A., Cunningham, S., Kok, C. et al. Transient suppression of hepatocellular replication in the mouse liver following transduction with recombinant adeno-associated virus. Gene Ther 22, 917–922 (2015). https://doi.org/10.1038/gt.2015.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.66

Search

Quick links