Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Liquid jet delivery method featuring S100A1 gene therapy in the rodent model following acute myocardial infarction

Abstract

The S100A1 gene is a promising target enhancing contractility and survival post myocardial infarction (MI). Achieving sufficient gene delivery within safety limits is a major translational problem. This proof of concept study evaluates viral mediated S100A1 overexpression featuring a novel liquid jet delivery (LJ) method. Twenty-four rats after successful MI were divided into three groups (n=8 ea.): saline control (SA); ssAAV9.S100A1 (SS) delivery; and scAAV9.S100A1 (SC) delivery (both 1.2 × 1011 viral particles). For each post MI rat, the LJ device fired three separate 100 μl injections into the myocardium. Following 10 weeks, all rats were evaluated with echocardiography, quantitative PCR (qPCR) and overall S100A1 and CD38 immune protein. At 10 weeks all groups demonstrated a functional decline from baseline, but the S100A1 therapy groups displayed preserved left ventricular function with significantly higher ejection fraction %; SS group (60±3) and SC group (57±4) versus saline (46±3), P<0.05. Heart qPCR testing showed robust S100A1 in the SS (10 147±3993) and SC (35 155±5808) copies per 100 ng DNA, while off-target liver detection was lower in both SS (40±40), SC (34 841±3164), respectively. Cardiac S100A1 protein expression was (4.3±0.2) and (6.1±0.3) fold higher than controls in the SS and SC groups, respectively, P<0.05.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Börries M et al. S100A1: a regulator of cardiac contractility. Proc Natl Acad Sci USA 2001; 98: 13889–13894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Most P, Remppis A, Pleger ST, Katus HA, Koch WJ . S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am J Physiol Regul Integr Comp Physiol 2007; 293: R568–R577.

    Article  CAS  PubMed  Google Scholar 

  3. Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W et al. Stable myocardial-specific AAV-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 2007; 115: 2506–2515.

    Article  CAS  PubMed  Google Scholar 

  4. Boerries M, Most P, Gledhill JR, Walker JE, Katus HA, Koch WJ et al. Ca2+-dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol Cell Biol 2007; 27: 4365–4373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer MS et al. Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 2001; 81: 2297–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maco B, Mandinova A, Durrenberger MB, Schafer BW, Uhrik B, Heizmann CW . Ultrastructural distribution of the S100A1 Ca2+-binding protein in the human heart. Physiol Res 2001; 50: 567–574.

    CAS  PubMed  Google Scholar 

  7. Most P, Remppis A, Pleger ST, Loffler E, Ehlermann P, Bernotat J et al. Transgenic overexpression of the Ca2+ binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance. J Biol Chem 2003; 5: 33809–33817.

    Article  Google Scholar 

  8. Most P, Seifert H, Gao E, Funakoshi H, Volkers M, Heierhorst J et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 2006; 114: 1258–1268.

    Article  CAS  PubMed  Google Scholar 

  9. Katz MG, Fargnoli AS, Williams RD, Bridges CR . The road ahead: working toward effective clinical translation of myocardial gene therapies. Ther Deliv 2014; 5: 39–51.

    Article  CAS  PubMed  Google Scholar 

  10. Fargnoli AS, Katz MG, Yarnall C, Sumaroka MV, Stedman H, Rabinowitz JJ et al. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window. J Card Fail 2011; 17: 691–699.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Katz MG, Fargnoli AS, Bridges CR . Myocardial gene transfer: routes and devices for regulation of transgene expression by modulation of cellular permeability. Hum Gene Ther 2013; 24: 375–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katz MG, Swain JD, Tomasulo CE, Sumaroka M, Fargnoli AS, Bridges CR . Current strategies for myocardial gene delivery. J Mol Cell Cardiol 2011; 50: 766–776.

    Article  CAS  PubMed  Google Scholar 

  13. Katz MG, Fargnoli AS, Williams RD, Bridges CR . Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications. Hum Gene Ther 2013; 24: 914–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999; 100: 468–474.

    Article  CAS  PubMed  Google Scholar 

  15. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 2008; 14: 355–367.

    Article  CAS  PubMed  Google Scholar 

  18. Fargnoli AS, Katz MG, Williams RD, Margulies KB, Bridges CR . A needleless liquid jet injection delivery method for cardiac gene therapy: a comparative evaluation versus standard routes of delivery reveals enhanced therapeutic retention and cardiac specific gene expression. J Cardiovasc Transl Res 2014; 7: 756–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Therapy 2003; 10: 2112–2118.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J, Xie J, Lu H, Chen L, Hauck B, Samulski RJ et al. Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction. Proc Natl Acad Sci USA 2007; 104: 13104–13109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koeberl DD, Pinto C, Sun B, Li S, Kozink DM, Benjamin DK Jr et al. AAV vector-mediated reversal of hypoglycemia in canine and murine glycogen storage disease type Ia. Mol Ther 2008; 16: 665–672.

    Article  CAS  PubMed  Google Scholar 

  24. Andino LM, Conlon TJ, Porvasnik SL, Boye SL, Hauswirth WW, Lewin AS . Rapid, widespread transduction of the murine myocardium using self-complementary adeno-associated virus. Genet Vaccines Ther 2007; 5: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu J, Zhao W, Zhong L, Han L, Li B, Ma W et al. Self-complementary recombinant adeno-associated viral vectors: packaging capacity and the role of rep proteins in vector purity. Hum Gene Ther 18: 171–182.

  26. Most P, Raake P, Weber C, Katus HA, Pleger ST . S100A1 gene therapy in small and large animals. Methods Mol Biol 2013; 963: 407–420.

    Article  CAS  PubMed  Google Scholar 

  27. Pleger ST, Shan C, Ksienzyk J, Bekeredjian R, Boekstegers P, Hinkel R et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med 2011; 3: 92ra64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 3: 321–328.

    Article  Google Scholar 

  30. Mays LE, Wilson JM . The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol Ther 2011; 1: 16–27.

    Article  Google Scholar 

  31. Pfeffer MA, Braunwald E . Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81: 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  32. Weber C, Neacsu I, Krautz B, Schlegel P, Sauer S, Raake P et al. Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Therapy 2014; 21: 131–138.

    Article  CAS  PubMed  Google Scholar 

  33. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM . Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy 2008; 15: 1550–1557.

    Article  CAS  PubMed  Google Scholar 

  34. Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 2007; 50: 253–260.

    Article  CAS  PubMed  Google Scholar 

  35. Bridges CR . 'Recirculating cardiac delivery' method of gene delivery should be called 'non-recirculating' method. Gene Therapy 2009; 16: 939–940.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Q, Huang W, Zhang H, Wang Y, Zhao J, Song A et al. Neutralizing antibodies against AAV2, AAV5 and AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Therapy 2014; 21: 732–738.

    Article  CAS  PubMed  Google Scholar 

  37. Partidá-Sánchez S, Rivero-Nava L, Shi G, Lund FE . CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses. Adv Exp Med Biol 2007; 590: 171–183.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was graciously supported by the Heineman Foundation as well as NIH grant 2-R01 HL083078-08. We acknowledge the Gene Therapy Resource Program (GTRP) of the National Heart, Lung and Blood Institute for their gracious support in providing all AAV vectors necessary for this study, in particular Dr Julie Johnston for custom analysis in the design phase. We also thank the Vivarium staff at Carolinas Medical Center for their outstanding effort with supporting the procedures and post-operative care and Dr Sriparna Ghosh who performed all of the Confocal microscopy analysis. This study received support from the Heineman Foundation, NIH grant 2-R01 HL083078-08, and the Gene Therapy Resource Program (GTRP) of the National Heart, Lung and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Fargnoli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fargnoli, A., Katz, M., Williams, R. et al. Liquid jet delivery method featuring S100A1 gene therapy in the rodent model following acute myocardial infarction. Gene Ther 23, 151–157 (2016). https://doi.org/10.1038/gt.2015.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.100

This article is cited by

Search

Quick links