Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure

Abstract

Adeno-associated virus (AAV)-based vectors are promising vehicles for therapeutic gene delivery, including for the treatment for heart failure. It has been demonstrated for each of the AAV serotypes 1 through 8 that inhibition of the proteasome results in increased transduction efficiencies. For AAV9, however, the effect of proteasome inhibitors on in vivo transduction has until now not been evaluated. Here we demonstrate, in a well-established rodent heart failure model, that concurrent treatment with the proteasome inhibitor bortezomib does not enhance the efficacy of AAV9.SERCA2a to improve cardiac function as examined by echocardiography and pressure volume analysis. Western blot analysis of SERCA2a protein and reverse transcription-PCR of SERCA2a mRNA demonstrated that bortezomib had no effect on either endogenous rat SERCA2a levels nor on expression levels of human SERCA2a delivered by AAV9.SERCA2a. Similarly, the number of AAV9 genomes in heart samples was unaffected by bortezomib treatment. Interestingly, whereas transduction of HeLa cells and neonatal rat cardiomyocytes by AAV9 was stimulated by bortezomib, transduction of adult rat cardiomyocytes was inhibited. These results indicate an organ/cell-type-specific effect of proteasome inhibition on AAV9 transduction. A future detailed analysis of the underlying molecular mechanisms promises to facilitate the development of improved AAV vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mingozzi F, High KA . Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12: 341–355.

    Article  CAS  PubMed  Google Scholar 

  2. Gruber K . Europe gives gene therapy the green light. Lancet 2012; 380: e10.

    Article  PubMed  Google Scholar 

  3. Colella P, Auricchio A . Gene therapy of inherited retinopathies: a long and successful road from viral vectors to patients. Hum Gene Ther 2012; 23: 796–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 2011; 477: 601–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakata S, Lebeche D, Sakata N, Sakata Y, Chemaly ER, Liang LF et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol 2007; 42: 852–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM . Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther 2008; 15: 1550–1557.

    Article  CAS  PubMed  Google Scholar 

  8. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 2008; 51: 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  9. Mi YF, Li XY, Tang LJ, Lu XC, Fu ZQ, Ye WH . Improvement in cardiac function after sarcoplasmic reticulum Ca2+-ATPase gene transfer in a beagle heart failure model. Chin Med J (Engl) 2009; 122: 1423–1428.

    CAS  Google Scholar 

  10. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 2009; 15: 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 2011; 124: 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mingozzi F, High KA . Immune responses to AAV in clinical trials. Curr Gene Ther 2011; 11: 321–330.

    Article  CAS  PubMed  Google Scholar 

  13. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007; 13: 419–422.

    Article  CAS  PubMed  Google Scholar 

  14. Gao G, Vandenberghe LH, Wilson JM . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  PubMed  Google Scholar 

  15. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michelfelder S, Trepel M . Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv Genet 2009; 67: 29–60.

    Article  CAS  PubMed  Google Scholar 

  17. Bartel MA, Weinstein JR, Schaffer DV . Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Therapy 2012; 19: 694–700.

    Article  CAS  PubMed  Google Scholar 

  18. Nonnenmacher M, Weber T . Intracellular transport of recombinant adeno-associated virus vectors. Gene Therapy 2012; 19: 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong L, Zhao W, Wu J, Li B, Zolotukhin S, Govindasamy L et al. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA Synthesis. Mol Ther 2007; 15: 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  20. Russell DW, Alexander IE, Miller AD . DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc Natl Acad Sci USA 1995; 92: 5719–5723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang T, Hu J, Ding W, Wang X . Doxorubicin augments rAAV-2 transduction in rat neuronal cells. Neurochem Int 2009; 55: 521–528.

    Article  CAS  PubMed  Google Scholar 

  22. Hansen J, Qing K, Srivastava A . Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts. J Virol 2001; 75: 4080–4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ju XD, Lou SQ, Wang WG, Peng JQ, Tian H . Effect of hydroxyurea and etoposide on transduction of human bone marrow mesenchymal stem and progenitor cell by adeno-associated virus vectors. Acta Pharmacol Sin 2004; 25: 196–202.

    CAS  PubMed  Google Scholar 

  24. Cheng B, Ling C, Dai Y, Lu Y, Glushakova LG, Gee SW et al. Development of optimized AAV3 serotype vectors: mechanism of high-efficiency transduction of human liver cancer cells. Gene Therapy 2012; 19: 375–384.

    Article  CAS  PubMed  Google Scholar 

  25. Denby L, Nicklin SA, Baker AH . Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Therapy 2005; 12: 1534–1538.

    Article  CAS  PubMed  Google Scholar 

  26. Douar AM, Poulard K, Stockholm D, Danos O . Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75: 1824–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li W, Zhang L, Wu Z, Pickles RJ, Samulski RJ . AAV-6 mediated efficient transduction of mouse lower airways. Virology 2011; 417: 327–333.

    Article  CAS  PubMed  Google Scholar 

  28. Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Finn J, Hui D, Downey H, Dunn D, Pien G, Mingozzi F et al. Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction. Mol Ther 2009; 18: 135–142.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mitchell AM, Samulski RJ . Mechanistic insights into the enhancement of adeno-associated virus transduction by proteasome inhibitors. J Virol 2013; 87: 13035–13041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 2001; 104: 1424–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams J, Elliott P, Bouchard P . Preclinical development of bortezomib (VELCADE). In: Adams J (ed) Proteasome Inhibitors in Cancer Therapy. Humana Press: Totowa, NJ, USA, 2004, pp 233–269.

    Chapter  Google Scholar 

  33. Mariani JA, Smolic A, Preovolos A, Byrne MJ, Power JM, Kaye DM . Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure. Eur J Heart Fail 2011; 13: 247–253.

    Article  CAS  PubMed  Google Scholar 

  34. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF . Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 2000; 105: 1573–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson JS, Samulski RJ . Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol 2009; 83: 2632–2644.

    Article  CAS  PubMed  Google Scholar 

  36. Dalkara D, Byrne LC, Lee T, Hoffmann NV, Schaffer DV, Flannery JG . Enhanced gene delivery to the neonatal retina through systemic administration of tyrosine-mutated AAV9. Gene Therapy 2012; 19: 176–181.

    Article  CAS  PubMed  Google Scholar 

  37. Qiao C, Yuan Z, Li J, Tang R, Xiao X . Single tyrosine mutation in AAV8 and AAV9 capsids is insufficient to enhance gene delivery to skeletal muscle and heart. Hum Gene Ther Methods 2012; 23: 29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Del Monte F, Butler K, Boecker W, Gwathmey JK, Hajjar RJ . Novel technique of aortic banding followed by gene transfer during hypertrophy and heart failure. Physiol Genomics 2002; 9: 49–56.

    Article  CAS  PubMed  Google Scholar 

  39. Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, Kass DA . Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats. Nat Protoc 2008; 3: 1422–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Porterfield JE, Kottam AT, Raghavan K, Escobedo D, Jenkins JT, Larson ER et al. Dynamic correction for parallel conductance, GP, and gain factor, alpha, in invasive murine left ventricular volume measurements. J Appl Physiol 2009; 107: 1693–1703.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 1984; 70: 812–823.

    Article  CAS  PubMed  Google Scholar 

  42. Grimm D, Kern A, Rittner K, Kleinschmidt JA . Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 1998; 9: 2745–2760.

    Article  CAS  PubMed  Google Scholar 

  43. Grieger JC, Choi VW, Samulski RJ . Production and characterization of adeno-associated viral vectors. Nat Protoc 2006; 1: 1412–1428.

    Article  CAS  PubMed  Google Scholar 

  44. Kohlbrenner E, Henckaerts E, Rapti K, Gordon RE, Linden RM, Hajjar RJ et al. Quantification of AAV particle titers by infrared fluorescence scanning of coomassie-stained sodium dodecyl sulfate-polyacrylamide gels. Hum Gene Ther Methods 2012; 23: 198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Communal C, Singh K, Pimentel DR, Colucci WS . Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 1998; 98: 1329–1334.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 HL093183 (RJH), HL088434 (RJH), HL097108 (FGA), P20 HL100396 (RJH), P50 HL112324 (RJH), NHLBI Program of Excellence in Nanotechnology (PEN) Award, contract number HHSN268201000045C (Zahi Fayad, Mount Sinai) and K08 HL111330 (JCK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Weber.

Ethics declarations

Competing interests

Dr Hajjar is the scientific cofounder of Celladon, which plans to commercialize AAV1.SERCA2a for the treatment of HF. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaanine, A., Nonnenmacher, M., Kohlbrenner, E. et al. Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure. Gene Ther 21, 379–386 (2014). https://doi.org/10.1038/gt.2014.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.7

This article is cited by

Search

Quick links