Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Calpain-dependent clearance of the autophagy protein p62/SQSTM1 is a contributor to ΔPK oncolytic activity in melanoma

Abstract

Oncolytic virotherapy is a promising strategy for reducing tumor burden through selective virus replication in rapidly proliferating cells. However, the lysis of slowly replicating cancer stem cells (CSCs), which maintain neoplastic clonality, is relatively modest and the potential contribution of programmed cell death pathways to oncolytic activity is still poorly understood. We show that the oncolytic virus ΔPK lyses CSC-enriched breast cancer and melanoma 3D spheroid cultures at low titers (0.1 pfu/cell) without resistance development and it inhibits the 3D growth potential (spheroids and agarose colonies) of melanoma and breast cancer cells. ΔPK induces calpain activation in both melanoma and breast cancer 3D cultures as determined by the loss of the p28 regulatory subunit, and 3D growth is restored by treatment with the calpain inhibitor PD150606. In melanoma, ΔPK infection also induces light chain 3 (LC3)-II accumulation and p62/SQSTM1 clearance, both markers of autophagy, and 3D growth is restored by treatment with the autophagy inhibitor chloroquine (CQ). However, expression of the autophagy-required protein Atg5 is not altered and CQ does not restore p62/SQSTM1 expression, suggesting that the CQ effect may be autophagy-independent. PD150606 restores expression of p62/SQSTM1 in ΔPK-infected melanoma cultures, suggesting that calpain activation induces anti-tumor activity through p62/SQSTM1 clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aghi M, Martuza RL . Oncolytic viral therapies—the clinical experience. Oncogene 2005; 24: 7802–7816.

    Article  CAS  PubMed  Google Scholar 

  2. Wakimoto H, Kesari S, Farrell CJ, Curry Jr WT, Zaupa C, Aghi M et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 2009; 69: 3472–3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeyaullah M, Patro M, Ahmad I, Ibraheem K, Sultan P, Nehal M et al. Oncolytic viruses in the treatment of cancer: a review of current strategies. Pathol Oncol Res 2012; 18: 771–781.

    Article  PubMed  Google Scholar 

  4. Fukunaga-Kalabis M, Roesch A, Herlyn M . From cancer stem cells to tumor maintenance in melanoma. J Invest Dermatol 2011; 131: 1600–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS, Johnson TM et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 2010; 18: 510–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Visvader JE, Lindeman GJ . Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717–728.

    Article  CAS  PubMed  Google Scholar 

  7. Kanai R, Zaupa C, Sgubin D, Antoszczyk SJ, Martuza RL, Wakimoto H et al. Effect of γ34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J Virol 2012; 86: 4420–4431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Todo T . Active immunotherapy: oncolytic virus therapy using HSV-1. Adv Exp Med Biol 2012; 746: 178–186.

    Article  CAS  PubMed  Google Scholar 

  9. Senzer NN, Kaufman HL, Amatruda T, Neumunaitis M, Daniels G, Gonzalez R et al. Phase II clinical trial of a granulocyte-macrophage colony- stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009; 27: 5763–5771.

    Article  CAS  PubMed  Google Scholar 

  10. Cheema TA, Wakimoto H, Fecci PE, Ning J, Kuroda T, Jeyaretna DS et al. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA 2013; 110: 12006–12011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahller YY, Williams IP, Baird WH, Mitton B, Grossheim J, Saeki Y et al. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One 2009; 4: e4235.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pressey JG, Haas MC, Pressey CS, Kelly VM, Parker JN, Gillespie GY et al. CD133 marks a myogenically primitive subpopulation in rhabdomyosarcoma cell lines that are relatively chemoresistant but sensitive to mutant HSV. Pediatr Blood Cancer 2013; 60: 45–52.

    Article  CAS  PubMed  Google Scholar 

  13. Hong CS, Fellows W, Niranjan A, Alber S, Watkins S, Cohen JB et al. Ectopic matrix metalloproteinase-9 expression in human brain tumor cells enhances oncolytic HSV vector infection. Gene Ther 2010; 17: 1200–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu G, Su W, Jin G, Xu F, Hao S, Guan F et al. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro. Brain Res 2011; 1390: 59–69.

    Article  CAS  PubMed  Google Scholar 

  15. Dmitrieva N, Yu L, Viapiano M, Cripe TP, Chiocca EA, Glorioso JC et al. Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res 2011; 17: 1362–1372.

    Article  CAS  PubMed  Google Scholar 

  16. Kanai R, Wakimoto H, Martuza RL, Rabkin SD . A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clin Cancer Res 2011; 17: 3686–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhuang X, Zhang W, Chen Y, Han X, Li J, Zhang Y et al. Doxorubicin-enriched, ALDH(br) mouse breast cancer stem cells are treatable to oncolytic herpes simplex virus type 1. BMC Cancer 2012; 12: 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colunga AG, Laing JM, Aurelian L . The HSV-2 mutant DeltaPK induces melanoma oncolysis through nonredundant death programs and associated with autophagy and pyroptosis proteins. Gene Ther 2010; 17: 315–327.

    Article  CAS  PubMed  Google Scholar 

  19. Smalley KS, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M . Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther 2006; 5: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  20. Nagano S, Perentes JY, Jain RK, Boucher Y . Cancer cell death enhances the penetration and efficacy of oncolytic herpes simplex virus in tumors. Cancer Res 2008; 68: 3795–3802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith CC, Peng T, Kulka M, Aurelian L . The PK domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is required for immediate-early gene expression and virus growth. J Virol 1998; 72: 9131–9141.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB . Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 2000; 74: 10417–10429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laing JM, Gober MD, Golembewski EK, Thompson SM, Gyure KA, Yarowsky PJ et al. Intranasal administration of the growth-compromised HSV-2 vector DeltaRR prevents kainate-induced seizures and neuronal loss in rats and mice. Mol Ther 2006; 13: 870–881.

    Article  CAS  PubMed  Google Scholar 

  24. Golembewski EK, Wales SQ, Aurelian L, Yarowsky PJ . The HSV-2 protein ICP10PK prevents neuronal apoptosis and loss of function in an in vivo model of neurodegeneration associated with glutamate excitotoxicity. Exp Neurol 2007; 203: 381–393.

    Article  CAS  PubMed  Google Scholar 

  25. Aurelian L . Herpes simplex virus type 2 vaccines: new ground for optimism? Clin Diagn Lab Immunol 2004; 11: 437–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S et al. Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 2012; 227: 325–335.

    Article  CAS  PubMed  Google Scholar 

  27. Dufau I, Frongia C, Sicard F, Dedieu L, Cordelier P, Ausseil F et al. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 2012; 12: 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ludwig K, Tse ES, Wang JY . Colon cancer cells adopt an invasive phenotype without mesenchymal transition in 3-D but not 2-D culture upon combined stimulation with EGF and crypt growth factors. BMC Cancer 2013; 13: 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loessner D, Flegg JA, Byrne HM, Clements JA, Hutmacher DW . Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach. Integr Biol (Camb) 2013; 5: 597–605.

    Article  CAS  Google Scholar 

  30. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 2008; 10: R52.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

  32. Perego M, Tortoreto M, Tragni G, Mariani L, Deho P, Carbone A et al. Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. J Invest Dermatol 2010; 130: 1877–1886.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Valyi-Nagy K, Dosa S, Kovacs SK, Bacsa S, Voros A, Shukla D et al. Identification of virus resistant tumor cell subpopulations in three-dimensional uveal melanoma cultures. Cancer Gene Ther 2010; 17: 223–234.

    Article  CAS  PubMed  Google Scholar 

  35. Perkins D, Pereira EF, Gober M, Yarowsky PJ, Aurelian L . The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 2002; 76: 1435–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY . Induction of lysosomal dilation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Opthalmol Vis Sci 2010; 51: 6030–6037.

    Article  Google Scholar 

  37. Egger ME, Huang JS, Yin W, McMasters KM, McNally LR . Inhibition of autophagy with chloroquine is effective in melanoma. J Surg Res 2013; 184: 274–281.

    Article  CAS  PubMed  Google Scholar 

  38. Mehrpour M, Esclatine A, Beau I, Codogno P . Overview of macroautophagy regulation in mammalian cells. Cell Res 2010; 20: 748–762.

    Article  PubMed  Google Scholar 

  39. Mizushima N, Yoshimori T, Levine B . Methods in mammalian autophagy research. Cell 2010; 140: 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 2013; 4: 2300.

    Article  PubMed  Google Scholar 

  41. Komatsu M, Kageyama S, Ichimura Y . p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 2012; 66: 457–462.

    Article  CAS  PubMed  Google Scholar 

  42. Moscat J, Diaz-Meco MT . p62: a versatile multitasker takes on cancer. Trends Biochem Sci 2012; 37: 230–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/ sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 2011; 108: 12455–12460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inoue D, Suzuki T, Mitsuishi Y, Miki Y, Suzuki S, Sugawara S et al. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci 2012; 103: 760–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rolland P, Madjd Z, Durrant L, Ellis IO, Layfield R, Spendlove I . The ubiquitin-binding protein p62 is expressed in breast cancers showing features of aggressive disease. Endocr Relat Cancer 2007; 14: 73–80.

    Article  PubMed  Google Scholar 

  46. Wales SQ, Laing JM, Chen L, Aurelian L . ICP10PK inhibits calpain-dependent release of apoptosis-inducing factor and programmed cell death in response to the toxin MPP+. Gene Ther 2008; 15: 1397–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 2010; 466: 133–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaggupilli A, Elkord E . Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012; 2012: 708036.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ali MA, Stepanko A, Fan X, Holt A, Schulz R . Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 2012; 423: 1–5.

    Article  CAS  PubMed  Google Scholar 

  50. Darnell GA, Schroder WA, Antalis TM, Lambley E, Major L, Gardner J et al. Human papillomavirus E7 requires the protease calpain to degrade the retinoblastoma protein. J Biol Chem 2007; 282: 37492–37500.

    Article  CAS  PubMed  Google Scholar 

  51. Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG . The calpain system and cancer. Nat Rev Cancer 2011; 11: 364–374.

    Article  CAS  PubMed  Google Scholar 

  52. Kim JW, Ho WJ, Wu BM . The role of the 3D environment in hypoxia-induced drug and apoptosis resistance. Anticancer Res 2011; 31: 3237–3245.

    CAS  PubMed  Google Scholar 

  53. Gong C, Bauvy C, Tonelli G, Yue W, Deloménie C, Nicolas V et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 2012; 32: 2261–2272.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Clarke PG, Puyal J . Autophagic cell death exists. Autophagy 2012; 8: 867–869.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rosenfeldt MT, Ryan KM . The multiple roles of autophagy in cancer. Carcinogenesis 2011; 32: 955–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu H, He Z, Simon HU . Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol 2013; 23: 352–360.

    Article  CAS  PubMed  Google Scholar 

  57. Lakhter AJ, Sahu RP, Sun Y, Kaufmann WK, Androphy EJ, Travers JB et al. Chloroquine promotes apoptosis in melanoma cells by inhibiting BH3 domain-mediated PUMA degradation. J Invest Dermatol 2013; 133: 2247–2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 2008; 13: 343–354.

    Article  CAS  PubMed  Google Scholar 

  59. Jariwalla RJ, Aurelian L, Ts'o PO . Immortalization and neoplastic transformation of normal diploid cells by defined cloned DNA fragments of herpes simplex virus type 2. Proc Natl Acad Sci USA 1983; 19: 5902–5906.

    Article  Google Scholar 

  60. Ono F, Sharma BK, Smith CC, Burnett JW, Aurelian L . CD34+ cells in the peripheral blood transport herpes simplex virus DNA fragments to the skin of patients with erythema multiforme (HAEM). J Invest Dermatol 2005; 124: 1215–1224.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by Public Health Service grant AR053512 from NIAMS, NIH. AC was supported by grant ES07263 from NIEHS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Aurelian.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colunga, A., Bollino, D., Schech, A. et al. Calpain-dependent clearance of the autophagy protein p62/SQSTM1 is a contributor to ΔPK oncolytic activity in melanoma. Gene Ther 21, 371–378 (2014). https://doi.org/10.1038/gt.2014.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.6

Keywords

This article is cited by

Search

Quick links