Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Construction and molecular characterization of a T-cell receptor-like antibody and CAR-T cells specific for minor histocompatibility antigen HA-1H

Abstract

The genetic transfer of T-cell receptors (TCRs) directed toward target antigens into T lymphocytes has been used to generate antitumor T cells efficiently without the need for the in vitro induction and expansion of T cells with cognate specificity. Alternatively, T cells have been gene-modified with a TCR-like antibody or chimeric antigen receptor (CAR). We show that immunization of HLA-A2 transgenic mice with tetramerized recombinant HLA-A2 incorporating HA-1 H minor histocompatibility antigen (mHag) peptides and β2-microglobulin (HA-1 H/HLA-A2) generate highly specific antibodies. One single-chain variable region moiety (scFv) antibody, #131, demonstrated high affinity (KD=14.9 nM) for the HA-1 H/HLA-A2 complex. Primary human T cells transduced with #131 scFV coupled to CD28 transmembrane and CD3ζ domains were stained with HA-1 H/HLA-A2 tetramers slightly more intensely than a cytotoxic T lymphocyte (CTL) clone specific for endogenously HLA-A2- and HA-1 H-positive cells. Although #131 scFv CAR-T cells required >100-fold higher antigen density to exert cytotoxicity compared with the cognate CTL clone, they could produce inflammatory cytokines against cells expressing HLA-A2 and HA-1 H transgenes. These data implicate that T cells with high-affinity antigen receptors reduce the ability to lyse targets with low-density peptide/MHC complexes (~100 per cell), while they could respond at cytokine production level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76 (12): 2462–2465.

    CAS  PubMed  Google Scholar 

  2. Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 2003; 100: 2742–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 1998; 279: 1054–1057.

    Article  CAS  PubMed  Google Scholar 

  4. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  5. Ochi T, Fujiwara H, Okamoto S, An J, Nagai K, Shirakata T et al. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 2011; 118: 1495–1503.

    Article  CAS  PubMed  Google Scholar 

  6. Udyavar A, Geiger TL . Rebalancing immune specificity and function in cancer by T-cell receptor gene therapy. Arch Immunol Ther Exp 2010; 58: 335–346.

    Article  CAS  Google Scholar 

  7. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 2010; 16: 565–570.

    Article  CAS  PubMed  Google Scholar 

  8. Heemskerk MH, Hagedoorn RS, van der Hoorn MA, van der Veken LT, Hoogeboom M, Kester MG et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 2007; 109: 235–243.

    Article  CAS  PubMed  Google Scholar 

  9. van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci USA 2010; 107: 10972–10977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Veken LT, Hagedoorn RS, van Loenen MM, Willemze R, Falkenburg JH, Heemskerk MH . Alphabeta T-cell receptor engineered gammadelta T cells mediate effective antileukemic reactivity. Cancer Res 2006; 66: 3331–3337.

    Article  CAS  PubMed  Google Scholar 

  11. Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 2012; 119: 5697–5705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H . T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol 2004; 173: 7647–7653.

    Article  CAS  PubMed  Google Scholar 

  13. Dotti G, Savoldo B, Brenner M . Fifteen years of gene therapy based on chimeric antigen receptors: "are we nearly there yet?". Human Gene Ther 2009; 20: 1229–1239.

    Article  CAS  Google Scholar 

  14. Cartellieri M, Bachmann M, Feldmann A, Bippes C, Stamova S, Wehner R et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol 2010; 2010: 956304.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Park TS, Rosenberg SA, Morgan RA . Treating cancer with genetically engineered T cells. Trends Biotechnol 2011; 29: 550–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stewart-Jones G, Wadle A, Hombach A, Shenderov E, Held G, Fischer E et al. Rational development of high-affinity T-cell receptor-like antibodies. Proc Natl Acad Sci USA 2009; 106: 5784–5788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weidanz JA, Hawkins O, Verma B, Hildebrand WH . TCR-like biomolecules target peptide/MHC Class I complexes on the surface of infected and cancerous cells. Int Rev Immunol 2011; 30: 328–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sergeeva A, Alatrash G, He H, Ruisaard K, Lu S, Wygant J et al. An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood 2011; 117: 4262–4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chames P, Hufton SE, Coulie PG, Uchanska-Ziegler B, Hoogenboom HR . Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc Natl Acad Sci USA 2000; 97: 7969–7974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cohen CJ, Sarig O, Yamano Y, Tomaru U, Jacobson S, Reiter Y . Direct phenotypic analysis of human MHC class I antigen presentation: visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J Immunol 2003; 170: 4349–4361.

    Article  CAS  PubMed  Google Scholar 

  21. Bernardeau K, Gouard S, David G, Ruellan AL, Devys A, Barbet J et al. Assessment of CD8 involvement in T cell clone avidity by direct measurement of HLA-A2/Mage3 complex density using a high-affinity TCR like monoclonal antibody. Eur J Immunol 2005; 35: 2864–2875.

    Article  CAS  PubMed  Google Scholar 

  22. Weidanz JA, Nguyen T, Woodburn T, Neethling FA, Chiriva-Internati M, Hildebrand WH et al. Levels of specific peptide-HLA class I complex predicts tumor cell susceptibility to CTL killing. J Immunol 2006; 177: 5088–5097.

    Article  CAS  PubMed  Google Scholar 

  23. Andersen PS, Stryhn A, Hansen BE, Fugger L, Engberg J, Buus S . A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc Natl Acad Sci USA 1996; 93: 1820–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krogsgaard M, Wucherpfennig KW, Cannella B, Hansen BE, Svejgaard A, Pyrdol J et al. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med 2000; 191: 1395–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyazaki M, Akatsuka Y, Nishida T, Fujii N, Hiraki A, Ikeda K et al. Potential limitations in using minor histocompatibility antigen-specific cytotoxic T cells for targeting solid tumor cells. Clin Immunol 2003; 107: 198–201.

    Article  CAS  PubMed  Google Scholar 

  26. Thomas S, Xue SA, Bangham CR, Jakobsen BK, Morris EC, Stauss HJ . Human T cells expressing affinity-matured TCR display accelerated responses but fail to recognize low density of MHC-peptide antigen. Blood 2011; 118: 319–329.

    Article  CAS  PubMed  Google Scholar 

  27. Poncelet P, Carayon P . Cytofluorometric quantification of cell-surface antigens by indirect immunofluorescence using monoclonal antibodies. J Immunol Methods 1985; 85: 65–74.

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Abbasi F, Gaigalas AK, Vogt RF, Marti GE . Comparison of fluorescein and phycoerythrin conjugates for quantifying CD20 expression on normal and leukemic B-cells. Cytometry B Clin Cytometry 2006; 70: 410–415.

    Article  PubMed  Google Scholar 

  29. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kochenderfer JN, Feldman SA, Zhao Y, Xu H, Black MA, Morgan RA et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 2009; 32: 689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kesmir C, Nussbaum AK, Schild H, Detours V, Brunak S . Prediction of proteasome cleavage motifs by neural networks. Protein Eng 2002; 15: 287–296.

    Article  CAS  PubMed  Google Scholar 

  32. Parker KC, Bednarek MA, Coligan JE . Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1994; 152: 163–175.

    CAS  PubMed  Google Scholar 

  33. Laugel B, Cole DK, Clement M, Wooldridge L, Price DA, Sewell AK . The multiple roles of the CD8 coreceptor in T cell biology: opportunities for the selective modulation of self-reactive cytotoxic T cells. J Leuk Biol 2011; 90: 1089–1099.

    Article  CAS  Google Scholar 

  34. Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 1996; 88: 2450–2457.

    CAS  PubMed  Google Scholar 

  35. Valitutti S . The serial engagement model 17 years after: from TCR triggering to immunotherapy. Front Immunol 2012; 3: 272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van der Merwe PA, Davis SJ . Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 2003; 21: 659–684.

    Article  CAS  PubMed  Google Scholar 

  37. Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z et al. H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol 1999; 29: 3112–3121.

    Article  CAS  PubMed  Google Scholar 

  38. Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B . HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 1997; 185: 2043–2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kondo E, Topp MS, Kiem HP, Obata Y, Morishima Y, Kuzushima K et al. Efficient generation of antigen-specific cytotoxic T cells using retrovirally transduced CD40-activated B cells. J Immunol 2002; 169: 2164–2171.

    Article  CAS  PubMed  Google Scholar 

  40. Torikai H, Akatsuka Y, Miyazaki M, Warren EH 3rd, Oba T, Tsujimura K et al. A novel HLA-A*3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene. J Immunol 2004; 173: 7046–7054.

    Article  CAS  PubMed  Google Scholar 

  41. Kuzushima K, Hayashi N, Kudoh A, Akatsuka Y, Tsujimura K, Morishima Y et al. Tetramer-assisted identification and characterization of epitopes recognized by HLA A*2402-restricted Epstein-Barr virus-specific CD8+ T cells. Blood 2003; 101: 1460–1468.

    Article  CAS  PubMed  Google Scholar 

  42. Khanna R, Burrows SR, Nicholls J, Poulsen LM . Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 1998; 28: 451–458.

    Article  CAS  PubMed  Google Scholar 

  43. Higo-Moriguchi K, Akahori Y, Iba Y, Kurosawa Y, Taniguchi K . Isolation of human monoclonal antibodies that neutralize human rotavirus. J Virol 2004; 78: 3325–3332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cohen CJ, Denkberg G, Lev A, Epel M, Reiter Y . Recombinant antibodies with MHC-restricted, peptide-specific, T-cell receptor-like specificity: new tools to study antigen presentation and TCR-peptide-MHC interactions. J Mol Recognit 2003; 16: 324–332.

    Article  CAS  PubMed  Google Scholar 

  45. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G . By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991; 222: 581–597.

    Article  CAS  PubMed  Google Scholar 

  46. Iba Y, Ito W, Kurosawa Y . Expression vectors for the introduction of highly diverged sequences into the six complementarity-determining regions of an antibody. Gene 1997; 194: 35–46.

    Article  CAS  PubMed  Google Scholar 

  47. Lee JT, Yu SS, Han E, Kim S, Kim S . Engineering the splice acceptor for improved gene expression and viral titer in an MLV-based retroviral vector. Gene Ther 2004; 11: 94–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr W Ho for critically reading the manuscript; Ms Sayoko Ogata and Ms Hiromi Tamaki for their technical expertise. This study was supported in part by Grant-in-Aid for Scientific Research (C)(24591435), from the Ministry of Education, Culture, Science, Sports and Technology, Japan; Grants for Research on the Human Genome, Tissue Engineering Food Biotechnology and the Second and Third Team Comprehensive 10-year Strategy for Cancer Control, from the Ministry of Health, Labour and Welfare, Japan; and a grant from the Japan Leukemia Research Fund (2013). This study was supported in part by Grant-in-Aid for Scientific Research (C)(24591435), from the Ministry of Education, Culture, Science, Sports and Technology, Japan; Grants for Research on the Human Genome, Tissue Engineering Food Biotechnology and the Second and Third Team Comprehensive 10-year Strategy for Cancer Control, from the Ministry of Health, Labour and Welfare, Japan; and a grant from the Japan Leukemia Research Fund (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Akatsuka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaguma, Y., Akahori, Y., Murayama, Y. et al. Construction and molecular characterization of a T-cell receptor-like antibody and CAR-T cells specific for minor histocompatibility antigen HA-1H. Gene Ther 21, 575–584 (2014). https://doi.org/10.1038/gt.2014.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.30

This article is cited by

Search

Quick links