Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector

Abstract

As both the immune system and the blood–brain barrier (BBB) are likely to be developmentally immature in the perinatal period, neonatal gene transfer may be useful for the treatment of lysosomal storage disease (LSD) with neurological involvements such as metachromatic leukodystrophy (MLD). In this experiment, we examined the feasibility of single-strand adeno-associated viral serotype-9 (ssAAV9)-mediated systemic neonatal gene therapy of MLD mice. ssAAV9 vector expressing human arylsulfatase A (ASA) and green fluorescent protein (GFP) (ssAAV9/ASA) was injected into the jugular vein of newborn MLD mice. High levels of ASA expression were observed in the muscle and heart for at least 15 months. ASA was continuously secreted into plasma without development of antibodies against ASA. Global gene transfer into the brain and spinal cord (SC), across the BBB, and long-term ASA expression in the central nervous system were detected in treated mice. Significant inhibition of the accumulation of sulfatide (Sulf) in the brain and cervical SC was confirmed by Alcian blue staining and biochemical analysis of the Sulf content. In a behavior test, treated mice showed a greater ability to traverse narrow balance beams than untreated mice. These data clearly demonstrate that MLD mice model can be effectively treated through neonatal systemic injection of ssAAV9/ASA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. von Figura K, Gieselmann V, Jaeken J . Metachromatic Leukodystrophy. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill: New York, 2001.

    Google Scholar 

  2. Matzner U, Herbst E, Hedayati KK, Lullmann-Rauch R, Wessig C, Schroder S et al. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet 2005; 14: 1139–1152.

    Article  CAS  PubMed  Google Scholar 

  3. Hille-Rehfeld A . Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim Biophys Acta 1995; 1241: 177–194.

    Article  PubMed  Google Scholar 

  4. Beck M . Therapy for lysosomal storage disorders. IUBMB Life 2010; 62: 33–40.

    CAS  PubMed  Google Scholar 

  5. Ponder KP . Immune response hinders therapy for lysosomal storage diseases. J Clin Invest 2008; 118: 2686–2689.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Saif MA, Bigger BW, Brookes KE, Mercer J, Tylee KL, Church HJ et al. Hematopoietic stem cell transplantation improves the high incidence of neutralizing allo-antibodies observed in Hurler's syndrome after pharmacological enzyme replacement therapy. Haematologica 2012; 97: 1320–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matthes F, Stroobants S, Gerlach D, Wohlenberg C, Wessig C, Fogh J et al. Efficacy of enzyme replacement therapy in an aggravated mouse model of metachromatic leukodystrophy declines with age. Hum Mol Genet 2012; 21: 2599–2609.

    Article  CAS  PubMed  Google Scholar 

  8. Matzner U, Lullmann-Rauch R, Stroobants S, Andersson C, Weigelt C, Eistrup C et al. Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol Ther 2009; 17: 600–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurai T, Hisayasu S, Kitagawa R, Migita M, Suzuki H, Hirai Y et al. AAV1 mediated co-expression of formylglycine-generating enzyme and arylsulfatase A efficiently corrects sulfatide storage in a mouse model of metachromatic leukodystrophy. Mol Ther 2007; 15: 38–43.

    Article  CAS  PubMed  Google Scholar 

  10. Janson C, McPhee S, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A et al. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 2002; 13: 1391–1412.

    Article  CAS  PubMed  Google Scholar 

  11. Leone P, Shera D, McPhee SW, Francis JS, Kolodny EH, Bilaniuk LT et al. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med 2012; 4: 165ra163.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miyake N, Miyake K, Karlsson S, Shimada T . Successful treatment of metachromatic leukodystrophy using bone marrow transplantation of HoxB4 overexpressing cells. Mol Ther 2010; 18: 1373–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biffi A, Capotondo A, Fasano S, del Carro U, Marchesini S, Azuma H et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J Clin Invest 2006; 116: 3070–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341: 1233158.

    Article  PubMed  Google Scholar 

  15. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  PubMed  Google Scholar 

  16. Miyake N, Miyake K, Yamamoto M, Hirai Y, Shimada T . Global gene transfer into the CNS across the BBB after neonatal systemic delivery of single-stranded AAV vectors. Brain Res 2011; 1389: 19–26.

    Article  CAS  PubMed  Google Scholar 

  17. Inagaki K, Piao C, Kotchey NM, Wu X, Nakai H . Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J Virol 2008; 82: 9513–9524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wittke D, Hartmann D, Gieselmann V, Lullmann-Rauch R . Lysosomal sulfatide storage in the brain of arylsulfatase A-deficient mice: cellular alterations and topographic distribution. Acta Neuropathol 2004; 108: 261–271.

    Article  CAS  PubMed  Google Scholar 

  19. Hu C, Busuttil RW, Lipshutz GS . RH10 provides superior transgene expression in mice when compared with natural AAV serotypes for neonatal gene therapy. J Gene Med 2010; 12: 766–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia AM, Fadel SA, Cao S, Sarzotti M . T cell immunity in neonates. Immunol Res 2000; 22: 177–190.

    Article  CAS  PubMed  Google Scholar 

  21. Ciesielska A, Hadaczek P, Mittermeyer G, Zhou S, Wright JF, Bankiewicz KS et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 2013; 21: 158–166.

    Article  CAS  PubMed  Google Scholar 

  22. Comley LH, Wishart TM, Baxter B, Murray LM, Nimmo A, Thomson D et al. Induction of cell stress in neurons from transgenic mice expressing yellow fluorescent protein: implications for neurodegeneration research. PLoS One 2011; 6: e17639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goto H, Yang B, Petersen D, Pepper KA, Alfaro PA, Kohn DB et al. Transduction of green fluorescent protein increased oxidative stress and enhanced sensitivity to cytotoxic drugs in neuroblastoma cell lines. Mol Cancer Ther 2003; 2: 911–917.

    CAS  PubMed  Google Scholar 

  24. Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ . Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 1999; 260: 712–717.

    Article  CAS  PubMed  Google Scholar 

  25. Detrait ER, Bowers WJ, Halterman MW, Giuliano RE, Bennice L, Federoff HJ et al. Reporter gene transfer induces apoptosis in primary cortical neurons. Mol Ther 2002; 5: 723–730.

    Article  CAS  PubMed  Google Scholar 

  26. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol 2011; 18: 1586–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006; 107: 1810–1817.

    Article  CAS  PubMed  Google Scholar 

  28. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21: 704–712.

    Article  CAS  PubMed  Google Scholar 

  29. Mingozzi F, High KA . Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  31. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hess B, Saftig P, Hartmann D, Coenen R, Lullmann-Rauch R, Goebel HH et al. Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci USA 1996; 93: 14821–14826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sevin C, Benraiss A, Van Dam D, Bonnin D, Nagels G, Verot L et al. Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy. Hum Mol Genet 2006; 15: 53–64.

    Article  CAS  PubMed  Google Scholar 

  34. D'Hooge R, Coenen R, Gieselmann V, Lullmann-Rauch R, De Deyn PP . Decline in brainstem auditory-evoked potentials coincides with loss of spiral ganglion cells in arylsulfatase A-deficient mice. Brain Res 1999; 847: 352–356.

    Article  CAS  PubMed  Google Scholar 

  35. Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A et al. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 2001; 7: 310–316.

    Article  CAS  PubMed  Google Scholar 

  36. Iwamoto N, Watanabe A, Yamamoto M, Miyake N, Kurai T, Teramoto A et al. Global diffuse distribution in the brain and efficient gene delivery to the dorsal root ganglia by intrathecal injection of adeno-associated viral vector serotype 1. J Gene Med 2009; 11: 498–505.

    Article  CAS  PubMed  Google Scholar 

  37. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hermens WT, ter Brake O, Dijkhuizen PA, Sonnemans MA, Grimm D, Kleinschmidt JA et al. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 1999; 10: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  39. Miyake K, Miyake N, Yamazaki Y, Shimada T, Hirai Y . Serotype-independent method of recombinant adeno-associated virus (AAV) vector production and purification. J Nippon Med Sch 2012; 79: 394–402.

    Article  CAS  PubMed  Google Scholar 

  40. Scott JE, Dorling J . Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions. Histochemie 1965; 5: 221–233.

    Article  CAS  PubMed  Google Scholar 

  41. Folch J, Lees M, Sloane Stanley GH . A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226: 497–509.

    CAS  PubMed  Google Scholar 

  42. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP et al. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J Neurosci 1999; 19: 3248–3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Volkmar Gieselmann at Rheinische Friedrich-Wilhelms-Universität for kindly providing MLD mice model and Dr James Wilson at the University of Pennsylvania for providing AAV packaging plasmids. This work was supported in part by grants from the Ministry of Health and Welfare of Japan and the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Shimada.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyake, N., Miyake, K., Asakawa, N. et al. Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector. Gene Ther 21, 427–433 (2014). https://doi.org/10.1038/gt.2014.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.17

This article is cited by

Search

Quick links