Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient central nervous system AAVrh10-mediated intrathecal gene transfer in adult and neonate rats

Abstract

Intracerebral administration of recombinant adeno-associated vector (AAV) has been performed in several clinical trials. However, delivery into the brain requires multiple injections and is not efficient to target the spinal cord, thus limiting its applications. To assess widespread and less invasive strategies, we tested intravenous (IV) or intrathecal (that is, in the cerebrospinal fluid (CSF)) delivery of a rAAVrh10-egfp vector in adult and neonate rats and studied the effect of the age at injection on neurotropism. IV delivery is more efficient in neonates and targets predominantly Purkinje cells of the cerebellum and sensory neurons of the spinal cord and dorsal root ganglia. A single intra-CSF administration of AAVrh10, single strand or oversized self-complementary, is efficient for the targeting of neurons in the cerebral hemispheres, cerebellum, brainstem and spinal cord. Green fluorescent protein (GFP) expression is more widespread in neonates when compared with adults. More than 50% of motor neurons express GFP in the three segments of the spinal cord in neonates and in the cervical and thoracic regions in adults. Neurons are almost exclusively transduced in neonates, whereas neurons, astrocytes and rare oligodendrocytes are targeted in adults. These results expand the possible routes of delivery of AAVrh10, a serotype that has shown efficacy and safety in clinical trials concerning neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Haskins ME . Gene therapy for lysosomal storage diseases (LSDs) in large animal models. ILAR J 2009; 50: 112–121.

    Article  CAS  Google Scholar 

  2. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ . Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996; 713: 99–107.

    Article  CAS  Google Scholar 

  3. Vite CH, Passini Ma, Haskins ME, Wolfe JH . Adeno-associated virus vector-mediated transduction in the cat brain. Gene Therapy 2003; 10: 1874–1881.

    Article  CAS  Google Scholar 

  4. Ciron C, Desmaris N, Colle M-A, Raoul S, Joussemet B, Vérot L et al. Gene therapy of the brain in the dog model of Hurler’s syndrome. Ann Neurol 2006; 60: 204–213.

    Article  CAS  Google Scholar 

  5. Ciron C, Cressant A, Raoul S, Cherel Y, Hantraye P, De N . Human alpha-iduronidase gene transfer mediated of nonhuman primates: vector diffusion and biodistribution. Hum Gene Ther 2009; 20: 350–360.

    Article  CAS  Google Scholar 

  6. Colle M-A, Piguet F, Bertrand L, Raoul S, Bieche I, Dubreil L et al. Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Hum Mol Genet 2010; 19: 147–158.

    Article  CAS  Google Scholar 

  7. Ellinwood NM, Ausseil J, Desmaris N, Bigou S, Liu S, Jens JK et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther 2011; 19: 251–259.

    Article  CAS  Google Scholar 

  8. Cearley CN, Wolfe JH . Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 2006; 13: 528–537.

    Article  CAS  Google Scholar 

  9. Klein RL, Dayton RD, Tatom JB, Henderson KM, Henning PP . AAV8, 9, Rh10, Rh43 vector gene transfer in the rat brain: effects of serotype, promoter and purification method. Mol Ther 2008; 16: 89–96.

    Article  CAS  Google Scholar 

  10. Piguet F, Sondhi D, Piraud M, Fouquet F, Hackett NR, Ahouansou O et al. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum Gene Ther 2012; 23: 903–914.

    Article  CAS  Google Scholar 

  11. Swain GP, Prociuk M, Bagel JH, Donnell PO, Berger K, Drobatz K et al. Adeno-associated virus serotypes 9 and rh10 mediate strong neuronal transduction of the dog brain. Gene Therapy 2014; 21: 28–36.

    Article  CAS  Google Scholar 

  12. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  Google Scholar 

  13. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar A-M et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17: 1187–1196.

    Article  CAS  Google Scholar 

  14. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 2011; 19: 1971–1980.

    Article  CAS  Google Scholar 

  15. Wang DB, Dayton RD, Henning PP, Cain CD, Zhao LR, Schrott LM et al. Expansive gene transfer in the rat CNS rapidly produces amyotrophic lateral sclerosis relevant sequelae when TDP-43 is overexpressed. Mol Ther 2010; 18: 2064–2074.

    Article  CAS  Google Scholar 

  16. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 2011; 1135: 1129–1135.

    Article  Google Scholar 

  17. Federici T, Taub JS, Baum GR, Gray SJ, Grieger JC, Matthews Ka et al. Robust spinal motor neuron transduction following intrathecal delivery of AAV9 in pigs. Gene Therapy 2012; 19: 852–859.

    Article  CAS  Google Scholar 

  18. Samaranch L, Salegio EA, Sebastian WS, Kells AP, Foust KD, Bringas JR et al. AAV9 transduction inthe CNS of non-human primate. Hum Gene Ther 2012; 23: 382–389.

    Article  CAS  Google Scholar 

  19. Samaranch L, Salegio Ea, San Sebastian W, Kells AP, Bringas JR, Forsayeth J et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 2013; 24: 526–532.

    Article  CAS  Google Scholar 

  20. Haurigot V, Marcó S, Ribera A, Garcia M, Ruzo A, Villacampa P et al. Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. J Clin Invest 2013; 123: 3254–3271.

    Article  CAS  Google Scholar 

  21. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude Samulski R . Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Therapy 2013; 20: 450–459.

    Article  CAS  Google Scholar 

  22. Bucher T, Colle M-A, Wakeling E, Dubreil L, Fyfe J, Briot-Nivard D et al. scAAV9 intracisternal delivery results in efficient gene transfer to the central nervous system of a feline model of motor neuron disease. Hum Gene Ther 2013; 24: 670–682.

    Article  CAS  Google Scholar 

  23. Miyake N, Miyake K, Yamamoto M, Hirai Y, Shimada T . Global gene transfer into the CNS across the BBB after neonatal systemic delivery of single-stranded AAV vectors. Brain Res 2011; 1389: 19–26.

    Article  CAS  Google Scholar 

  24. Hu C, Busuttil RW, Lipshutz GS . RH10 provides superior transgene expression in mice when compared with natural AAV serotypes for neonatal gene therapy. J Gene Med 2010; 12: 766–778.

    Article  CAS  Google Scholar 

  25. Zhang H, Yang B, Mu X, Ahmed SS, Su Q, He R et al. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol Ther 2011; 19: 1440–1448.

    Article  CAS  Google Scholar 

  26. McCarty DM . Self-complementary AAV vectors; advances and applications. Mol Ther 2008; 16: 1648–1656.

    Article  CAS  Google Scholar 

  27. Dong B, Nakai H, Xiao W . Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 2010; 18: 87–92.

    Article  CAS  Google Scholar 

  28. Wang Y, Ling C, Song L, Wang L, Aslanidi GV, Tan M et al. Limitations of encapsidation of recombinant self-complementary adeno-associated viral genomes in different serotype capsids and their quantitation. Hum Gene Ther Methods 2012; 23: 225–233.

    Article  CAS  Google Scholar 

  29. Hirsch ML, Li C, Bellon I, Yin C, Chavala S, Pryadkina M et al. Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway. Mol Ther 2013; 21: 2205–2216.

    Article  CAS  Google Scholar 

  30. Xu Y, Gu Y, Wu P, Li G-W, Huang L-YM . Efficiencies of transgene expression in nociceptive neurons through different routes of delivery of adeno-associated viral vectors. Hum Gene Ther 2003; 14: 897–906.

    Article  CAS  Google Scholar 

  31. Storek B, Harder NM, Banck MS, Wang C, McCarty DM, Janssen WG et al. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Mol Pain 2006; 2: 4.

    Article  Google Scholar 

  32. Towne C, Pertin M, Beggah AT, Aebischer P, Decosterd I . Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Mol Pain 2009; 5: 52.

    Article  Google Scholar 

  33. Vulchanova L, Schuster DJ, Belur LR, Riedl MS, Podetz-Pedersen KM, Kitto KF et al. Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. Mol Pain 2010; 6: 31.

    Article  Google Scholar 

  34. Fu H, Muenzer J, Samulski RJ, Breese G, Sifford J, Zeng X et al. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol Ther 2003; 8: 911–917.

    Article  CAS  Google Scholar 

  35. Dirren E, Towne CL, Setola V, Redmond DE, Schneider BL, Aebischer P . Intracerebroventricular injection of adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord. Hum Gene Ther 2014; 25: 109–120.

    Article  CAS  Google Scholar 

  36. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X et al. Clades of adeno-associated viruses are widely disseminated in human tissues clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  Google Scholar 

  37. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) Types 1,2,5,6,8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 2010; 21: 704–712.

    Article  CAS  Google Scholar 

  38. Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet 2014; 23: 668–681.

    Article  CAS  Google Scholar 

  39. Gray SJ, Foti SB, Schwartz JW, Bachabiona L, Taylor-Blake B, Coleman J et al. Optimizing promoters for rAAV-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 2011; 22: 1143–1153.

    Article  CAS  Google Scholar 

  40. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 2013; 123: 1299–1309.

    Article  CAS  Google Scholar 

  41. Zhou X, Zeng X, Fan Z, Li C, McCown T, Samulski RJ et al. Adeno-associated virus of a single-polarity DNA genome is capable of transduction in vivo. Mol Ther 2008; 16: 494–499.

    Article  CAS  Google Scholar 

  42. Milward Ea, Fitzsimmons C, Szklarczyk A, Conant K . The matrix metalloproteinases and CNS plasticity: an overview. J Neuroimmunol 2007; 187: 9–19.

    Article  CAS  Google Scholar 

  43. Rabinowitz JE, Rolling F, Li C, Xiao W, Xiao X, Samulski RJ . Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the vector core of the Atlantic Gene Therapies Institute (AGT) in Nantes for the preparation of the rAAV vectors, Oumeya Adjali and Johanne Le Duff for the seroneutralization assay and the Boisbonne Centre for assistance with animal production and care. This work was supported by grants from the Association Française contre les Myopathies (AFM), the National French Academy of Medicine and an additional grant from ‘Investissement d'Avenir—ANR-11-INBS-0011’—NeurATRIS: A Translational Research Infrastructure for Biotherapies in Neurosciences’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-A Colle.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hordeaux, J., Dubreil, L., Deniaud, J. et al. Efficient central nervous system AAVrh10-mediated intrathecal gene transfer in adult and neonate rats. Gene Ther 22, 316–324 (2015). https://doi.org/10.1038/gt.2014.121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.121

This article is cited by

Search

Quick links