Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage

Abstract

Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of SPARC in acute liver injury, we used SPARC knock-out (SPARC−/−) mice. Two models of acute liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC−/− mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in SPARC−/− mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in Con A-treated SPARC−/− mice. SPARC knockdown reduced Con A-induced autophagy of cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis revealed several gene networks that may have a role in the attenuated liver damaged found in Con A-treated SPARC−/− mice. SPARC has a significant role in the development of Con A-induced severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute liver injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bernuau J, Rueff B, Benhamou JP . Fulminant and subfulminant liver failure: definitions and causes. Semin Liver Dis 1986; 6: 97–106.

    Article  CAS  Google Scholar 

  2. Brekken RA, Sage EH . SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol 2000; 19: 569–580.

    Article  CAS  Google Scholar 

  3. Bradshaw AD, Sage EH . SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 2001; 107: 1049–1054.

    Article  CAS  Google Scholar 

  4. Atorrasagasti C, Peixoto E, Aquino JB, Kippes N, Malvicini M, Alaniz L et al. Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) attenuates liver fibrogenesis in mice. PLoS One 2013; 8: e54962.

    Article  CAS  Google Scholar 

  5. Francki A, Bradshaw AD, Bassuk JA, Howe CC, Couser WG, Sage EH . SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. J Biol Chem 1999; 274: 32145–32152.

    Article  CAS  Google Scholar 

  6. Blazejewski S, Le Bail B, Boussarie L, Blanc JF, Malaval L, Okubo K et al. Osteonectin (SPARC) expression in human liver and in cultured human liver myofibroblasts. Am J Pathol 1997; 151: 651–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelly KA, Allport JR, Yu AM, Sinh S, Sage EH, Gerszten RE et al. SPARC is a VCAM-1 counter-ligand that mediates leukocyte transmigration. J Leukoc Biol 2007; 81: 748–756.

    Article  CAS  Google Scholar 

  8. Murphy-Ullrich JE, Lane TF, Pallero MA, Sage EH . SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J Cell Biochem 1995; 57: 341–350.

    Article  CAS  Google Scholar 

  9. Tiegs G, Hentschel J, Wendel A . A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992; 90: 196–203.

    Article  CAS  Google Scholar 

  10. Chang CP, Lei HY . Autophagy induction in T cell-independent acute hepatitis induced by concanavalin A in SCID/NOD mice. Int J Immunopathol Pharmacol 2008; 21: 817–826.

    Article  CAS  Google Scholar 

  11. Yang MC, Chang CP, Lei HY . Endothelial cells are damaged by autophagic induction before hepatocytes in Con A-induced acute hepatitis. Int Immunol 2010; 22: 661–670.

    Article  CAS  Google Scholar 

  12. Cardier JE, Schulte T, Kammer H, Kwak J, Cardier M . Fas (CD95, APO-1) antigen expression and function in murine liver endothelial cells: implications for the regulation of apoptosis in liver endothelial cells. FASEB J 1999; 13: 1950–1960.

    Article  CAS  Google Scholar 

  13. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364: 806–809.

    Article  CAS  Google Scholar 

  14. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60–68.

    Article  CAS  Google Scholar 

  15. Bykov I, Junnikkala S, Pekna M, Lindros KO, Meri S . Effect of chronic ethanol consumption on the expression of complement components and acute-phase proteins in liver. Clin Immunol 2007; 124: 213–220.

    Article  CAS  Google Scholar 

  16. Cain K, Freathy C . Liver toxicity and apoptosis: role of TGF-beta1, cytochrome c and the apoptosome. Toxicol Lett 2001; 120: 307–315.

    Article  CAS  Google Scholar 

  17. Knolle PA, Gerken G, Loser E, Dienes HP, Gantner F, Tiegs G et al. Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology 1996; 24: 824–829.

    Article  CAS  Google Scholar 

  18. Tang MJ, Tai IT . A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. J Biol Chem 2007; 282: 34457–34467.

    Article  CAS  Google Scholar 

  19. Yiu GK, Chan WY, Ng SW, Chan PS, Cheung KK, Berkowitz RS et al. SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. Am J Pathol 2001; 159: 609–622.

    Article  CAS  Google Scholar 

  20. Bhoopathi P, Gondi CS, Gujrati M, Dinh DH, Lakka SS . SPARC mediates Src-induced disruption of actin cytoskeleton via inactivation of small GTPases Rho-Rac-Cdc42. Cell Signal 2011; 23: 1978–1987.

    Article  CAS  Google Scholar 

  21. Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N et al. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 2011; 9: 54.

    Article  CAS  Google Scholar 

  22. Kim YC, Kim BG, Lee JH . Thymosin beta10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production. PLoS One 2012; 7: e35399.

    Article  CAS  Google Scholar 

  23. Kaji N, Ohashi K, Shuin M, Niwa R, Uemura T, Mizuno K . Cell cycle-associated changes in Slingshot phosphatase activity and roles in cytokinesis in animal cells. J Biol Chem 2003; 278: 33450–33455.

    Article  CAS  Google Scholar 

  24. Ware CF, Sedy JR . TNF Superfamily Networks: bidirectional and interference pathways of the herpesvirus entry mediator (TNFSF14). Curr Opin Immunol 2011; 23: 627–631.

    Article  CAS  Google Scholar 

  25. Atorrasagasti C, Malvicini M, Aquino JB, Alaniz L, Garcia M, Bolontrade M et al. Overexpression of SPARC obliterates the in vivo tumorigenicity of human hepatocellular carcinoma cells. Int J Cancer 2010; 126: 2726–2740.

    CAS  PubMed  Google Scholar 

  26. Camino AM, Atorrasagasti C, Maccio D, Prada F, Salvatierra E, Rizzo M et al. Adenovirus-mediated inhibition of SPARC attenuates liver fibrosis in rats. J Gene Med 2008; 10: 993–1004.

    Article  CAS  Google Scholar 

  27. Piccioni F, Malvicini M, Garcia MG, Rodriguez A, Atorrasagasti C, Kippes N et al. Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice. Glycobiology 2012; 22: 400–410.

    Article  CAS  Google Scholar 

  28. Atorrasagasti C, Aquino JB, Hofman L, Alaniz L, Malvicini M, Garcia M et al. SPARC downregulation attenuates the profibrogenic response of hepatic stellate cells induced by TGF-beta1 and PDGF. Am J Physiol Gastrointest Liver Physiol 2011; 300: G739–G748.

    Article  CAS  Google Scholar 

  29. Malvicini M, Alaniz L, Bayo J, Garcia M, Piccioni F, Fiore E et al. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice. Oncoimmunology 2012; 1: 1038–1047.

    Article  Google Scholar 

  30. Luo Z, Liu H, Sun X, Guo R, Cui R, Ma X et al. RNA interference against discoidin domain receptor 2 ameliorates alcoholic liver disease in rats. PLoS One 2013; 8: e55860.

    Article  CAS  Google Scholar 

  31. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007; 23: 2700–2707.

    Article  CAS  Google Scholar 

  32. Smyth GK, Speed T . Normalization of cDNA microarray data. Methods 2003; 31: 265–273.

    Article  CAS  Google Scholar 

  33. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002; 30: e15.

    Article  Google Scholar 

  34. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA et al. TM4 microarray software suite. Methods Enzymol 2006; 411: 134–193.

    Article  CAS  Google Scholar 

  35. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank V Ferreira, S Arregui and G Gastón for expert technical assistance This work was supported by grants from Austral University (for JB I04-12; for MGG T13-12; for JBA 17-09; and for GM T13-11) and from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) grants PICT-2007/00082 (MGG and GM); PICT 2008/00123 (JBA); PICTO 2008/00122 (JBA); CTE-06 PIA CONICYT–Chile (MG and GM); PICTO 2008/00115 (MGG); PICT 2010/2818 (MGG and GM); PICT2008# and PICT 2011 # (MIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mazzolini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto, E., Atorrasagasti, C., Aquino, J. et al. SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage. Gene Ther 22, 9–19 (2015). https://doi.org/10.1038/gt.2014.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.102

This article is cited by

Search

Quick links