Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of breast tumor growth by DNA vaccination against phosphatase of regenerating liver 3

Abstract

Phosphatase of regenerating liver (PRL)-3 is highly expressed in multiple cancers and has important roles in cancer development. Some small-molecule inhibitors and antibodies targeting PRL-3 have been recently reported to inhibit tumor growth effectively. To determine whether PRL-3-targeted DNA vaccination can induce immune response to prevent or inhibit the tumor growth, we established mouse D2F2 breast cancer cells expressing PRL-3 (D2F2/PRL-3) and control cells (D2F2/NC) with lentivirus, and constructed pVAX1-Igκ-PRL-3 plasmid (named as K-P3) as DNA vaccine to immunize BALB/c mice. We found that the K-P3 vaccine delivered by gene gun significantly prevented the growth of D2F2/PRL-3 compared with pVAX1-vector (P<0.01), but not of D2F2/NC, and improved the survival of D2F2/PRL-3-innoculated mice. Both PRL-3-targeted cytotoxic T lymphocytes (CTLs) and T-helper type 1 cell immune response (production of high levels of interferon-γ and tumor necrosis factor-α) were found to be involved in the preventive effect. Furthermore, PRL-3-targeted DNA immunization inhibited tumor growth of D2F2/PRL-3 cells in mice. We also evaluated the potential of immunization with PRL-3 protein, but no significant therapeutic or preventive effect was obtained on tumor growth. To enhance the immunity of PRL-3, we incorporated different molecular adjuvants, such as Mycobacterium tuberculosis heat-shock protein, CTL antigen 4 and M. tuberculosis T-cell stimulatory epitope (MT), into K-P3 vaccine for expressing the fusion proteins. We found that these adjuvant molecules did not significantly improve the antitumor activity of PRL-3 vaccine, but enhanced the production of PRL-3 antibodies in immunized mice. Summarily, our findings demonstrate that PRL-3-targeted DNA vaccine can generate significantly preventive and therapeutic effects on the growth of breast cancer expressing PRL-3 through the induction of cellular immune responses to PRL-3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jiang ZX, Zhang ZY . Targeting PTPs with small molecule inhibitors in cancer treatment. Cancer Metastasis Rev 2008; 27: 263–272.

    Article  CAS  Google Scholar 

  2. Ostman A, Hellberg C, Bohmer FD . Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006; 6: 307–320.

    Article  Google Scholar 

  3. Song R, Qian F, Li YP, Sheng X, Cao SX, Xu Q . Phosphatase of regenerating liver-3 localizes to cyto-membrane and is required for B16F1 melanoma cell metastasis in vitro and in vivo. PLoS One 2009; 4: e4450.

    Article  Google Scholar 

  4. Bessette DC, Qiu D, Pallen CJ . PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev 2008; 27: 231–252.

    Article  CAS  Google Scholar 

  5. Rios P, Li X, Kohn M . Molecular Mechanisms of the PRL phosphatases. FEBS J 2013; 280: 505–524.

    Article  CAS  Google Scholar 

  6. Wang L, Peng L, Dong B, Kong L, Meng L, Yan L et al. Overexpression of phosphatase of regenerating liver-3 in breast cancer: association with a poor clinical outcome. Ann Oncol 2006; 17: 1517–1522.

    Article  CAS  Google Scholar 

  7. Peng L, Ning J, Meng L, Shou C . The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol 2004; 130: 521–526.

    Article  CAS  Google Scholar 

  8. Ren T, Jiang B, Xing X, Dong B, Peng L, Meng L et al. Prognostic significance of phosphatase of regenerating liver-3 expression in ovarian cancer. Pathol Oncol Res 2009; 15: 555–560.

    Article  CAS  Google Scholar 

  9. Xing X, Peng L, Qu L, Ren T, Dong B, Su X et al. Prognostic value of PRL-3 overexpression in early stages of colonic cancer. Histopathology 2009; 54: 309–318.

    Article  Google Scholar 

  10. Peng L, Xing X, Li W, Qu L, Meng L, Lian S et al. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling. Mol Cancer 2009; 8: 110.

    Article  Google Scholar 

  11. Wang H, Quah SY, Dong JM, Manser E, Tang JP, Zeng Q . PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial–mesenchymal transition. Cancer Res 2007; 67: 2922–2926.

    Article  CAS  Google Scholar 

  12. Liu Y, Zhou J, Chen J, Gao W, Le Y, Ding Y et al. PRL-3 promotes epithelial mesenchymal transition by regulating cadherin directly. Cancer Biol Ther 2009; 8: 1352–1359.

    Article  CAS  Google Scholar 

  13. Al-Aidaroos AQ, Zeng Q . PRL-3 phosphatase and cancer metastasis. J Cell Biochem 2010; 111: 1087–1098.

    Article  CAS  Google Scholar 

  14. Pathak MK, Dhawan D, Lindner DJ, Borden EC, Farver C, Yi T . Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Mol Cancer Ther 2002; 1: 1255–1264.

    CAS  PubMed  Google Scholar 

  15. Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD, Kim SS et al. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg Med Chem Lett 2006; 16: 2996–2999.

    Article  CAS  Google Scholar 

  16. Daouti S, Li WH, Qian H, Huang KS, Holmgren J, Levin W et al. A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res 2008; 68: 1162–1169.

    Article  CAS  Google Scholar 

  17. Wang L, Shen Y, Song R, Sun Y, Xu J, Xu Q . An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Mol Pharmacol 2009; 76: 1238–1245.

    Article  CAS  Google Scholar 

  18. Guo K, Tang JP, Tan CP, Wang H, Zeng Q . Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Cancer Biol Ther 2008; 7: 750–757.

    Article  CAS  Google Scholar 

  19. Guo K, Li J, Tang JP, Tan CP, Hong CW, Al-Aidaroos AQ et al. Targeting intracellular oncoproteins with antibody therapy or vaccination. Sci Transl Med 2011; 3: 99ra85.

    Article  Google Scholar 

  20. Guo K, Tang JP, Jie L, Al-Aidaroos AQ, Hong CW, Tan CP et al. Engineering the first chimeric antibody in targeting intracellular PRL-3 oncoprotein for cancer therapy in mice. Oncotarget 2012; 3: 158–171.

    Article  Google Scholar 

  21. Fioretti D, Iurescia S, Fazio VM, Rinaldi M . DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 2010: 174378.

    Article  Google Scholar 

  22. Kutzler MA, Weiner DB . DNA vaccines: ready for prime time? Nat Rev Genet 2008; 9: 776–788.

    Article  CAS  Google Scholar 

  23. Qin H, Zhou C, Wang D, Ma W, Liang X, Lin C et al. Enhancement of antitumour immunity by a novel chemotactic antigen DNA vaccine encoding chemokines and multiepitopes of prostate-tumour-associated antigens. Immunology 2006; 117: 419–430.

    Article  CAS  Google Scholar 

  24. Huang CH, Chang CC, Lin CM, Wang ST, Wu MT, Li EI et al. Promoting effect of Antrodia camphorata as an immunomodulating adjuvant on the antitumor efficacy of HER-2/neu DNA vaccine. Cancer Immunol Immunother 2010; 59: 1259–1272.

    Article  CAS  Google Scholar 

  25. Nguyen-Hoai T, Baldenhofer G, Sayed Ahmed MS, Pham-Duc M, Vu MD, Lipp M et al. CCL21 (SLC) improves tumor protection by a DNA vaccine in a Her2/neu mouse tumor model. Cancer Gene Ther 2012; 19: 69–76.

    Article  CAS  Google Scholar 

  26. Grujic M, Holst PJ, Christensen JP, Thomsen AR . Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice. J Gen Virol 2009; 90: 414–422.

    Article  CAS  Google Scholar 

  27. Kang TH, Kim KW, Bae HC, Seong SY, Kim TW . Enhancement of DNA vaccine potency by antigen linkage to IFN-gamma-inducible protein-10. Int J Cancer 2011; 128: 702–714.

    Article  CAS  Google Scholar 

  28. Fagone P, Shedlock DJ, Bao H, Kawalekar OU, Yan J, Gupta D et al. Molecular adjuvant HMGB1 enhances anti-influenza immunity during DNA vaccination. Gene Therapy 2011; 18: 1070–1077.

    Article  CAS  Google Scholar 

  29. Mellman I, Coukos G, Dranoff G . Cancer immunotherapy comes of age. Nature 2011; 480: 480–489.

    Article  CAS  Google Scholar 

  30. Li J, Guo K, Koh VW, Tang JP, Gan BQ, Shi H et al. Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases. Clin Cancer Res 2005; 11: 2195–2204.

    Article  CAS  Google Scholar 

  31. Tang YS, Wang D, Zhou C, Ma W, Zhang YQ, Liu B et al. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Therapy 2011; 19: 1187–1195.

    Article  Google Scholar 

  32. Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M . Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2: 205–218.

    Article  CAS  Google Scholar 

  33. Wu X, Zeng H, Zhang X, Zhao Y, Sha H, Ge X et al. Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol 2004; 164: 2039–2054.

    Article  CAS  Google Scholar 

  34. Liang F, Liang J, Wang WQ, Sun JP, Udho E, Zhang ZY . PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem 2007; 282: 5413–5419.

    Article  CAS  Google Scholar 

  35. Antin PB, Ordahl CP . Isolation and characterization of an avian myogenic cell line. Dev Biol 1991; 143: 111–121.

    Article  CAS  Google Scholar 

  36. Song L, Ke Y, Zhang ZQ . High level expression and purification of recombinant PEX protein in cultured skeletal muscle cell expression system. Biochem Biophys Res Commun 2007; 357: 258–263.

    Article  CAS  Google Scholar 

  37. Qian X, Lu Y, Liu Q, Chen K, Zhao Q, Song J . Prophylactic, therapeutic and anti-metastatic effects of an HPV-16mE6Delta/mE7/TBhsp70Delta fusion protein vaccine in an animal model. Immunol Lett 2006; 102: 191–201.

    Article  CAS  Google Scholar 

  38. Sloots A, Mastini C, Rohrbach F, Weth R, Curcio C, Burkhardt U et al. DNA vaccines targeting tumor antigens to B7 molecules on antigen-presenting cells induce protective antitumor immunity and delay onset of HER-2/Neu-driven mammary carcinoma. Clin Cancer Res 2008; 14: 6933–6943.

    Article  CAS  Google Scholar 

  39. Lohnas GL, Roberts SF, Pilon A, Tramontano A . Epitope-specific antibody and suppression of autoantibody responses against a hybrid self protein. J Immunol 1998; 161: 6518–6525.

    CAS  PubMed  Google Scholar 

  40. Zhou H, Wang Y, Wang W, Jia J, Li Y, Wang Q et al. Generation of monoclonal antibodies against highly conserved antigens. PLoS One 2009; 4: e6087.

    Article  Google Scholar 

  41. Stevenson FK, Rice J, Ottensmeier CH, Thirdborough SM, Zhu D . DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 2004; 199: 156–180.

    Article  CAS  Google Scholar 

  42. Garmory HS, Brown KA, Titball RW . DNA vaccines: improving expression of antigens. Genet Vaccines Ther 2003; 1: 2.

    Article  Google Scholar 

  43. Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ et al. DNA vaccines to attack cancer. Proc Natl Acad Sci USA 2004; 101 (Suppl 2): 14646–14652.

    Article  CAS  Google Scholar 

  44. Stoitzner P, Tripp CH, Eberhart A, Price KM, Jung JY, Bursch L et al. Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci USA 2006; 103: 7783–7788.

    Article  CAS  Google Scholar 

  45. Rice J, Ottensmeier CH, Stevenson FK . DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8: 108–120.

    Article  CAS  Google Scholar 

  46. Stephens B, Han H, Hostetter G, Demeure MJ, Von Hoff DD . Small interfering RNA-mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells. Mol Cancer Ther 2008; 7: 202–210.

    Article  CAS  Google Scholar 

  47. Leitner WW, Baker MC, Berenberg TL, Lu MC, Yannie PJ, Udey MC . Enhancement of DNA tumor vaccine efficacy by gene gun-mediated codelivery of threshold amounts of plasmid-encoded helper antigen. Blood 2009; 113: 37–45.

    Article  CAS  Google Scholar 

  48. Li MO, Flavell RA . Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 2008; 28: 468–476.

    Article  Google Scholar 

  49. Hong CW, Zeng Q . Awaiting a new era of cancer immunotherapy. Cancer Res 2012; 72: 3715–3719.

    Article  CAS  Google Scholar 

  50. Jancar S, Sanchez Crespo M . Immune complex-mediated tissue injury: a multistep paradigm. Trends Immunol 2005; 26: 48–55.

    Article  CAS  Google Scholar 

  51. Lin M, Beihai J, Wei Z, Lili Z, Caiyun L, Jian W et al. Construction, expression and immune response of eukaryotic plasmid secreting SNCG. J Biomed Eng 2010; 27: 626–630.

    CAS  Google Scholar 

  52. Peng L, Li Y, Meng L, Shou C . Preparation and characterization of monoclonal antibody against protein tyrosine phosphatase PRL-3. Hybrid Hybridomics 2004; 23: 23–27.

    Article  CAS  Google Scholar 

  53. Rohrbach F, Weth R, Kursar M, Sloots A, Mittrucker HW, Wels WS . Targeted delivery of the ErbB2/HER2 tumor antigen to professional APCs results in effective antitumor immunity. J Immunol 2005; 174: 5481–5489.

    Article  CAS  Google Scholar 

  54. Gao Y, Su Y, Qu L, Xu S, Meng L, Cai SQ et al. Mitochondrial apoptosis contributes to the anti-cancer effect of Smilax glabra Roxb. Toxicol Lett 2011; 207: 112–120.

    Article  CAS  Google Scholar 

  55. Qian F, Li YP, Sheng X, Zhang ZC, Song R, Dong W et al. PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo. Mol Med 2007; 13: 151–159.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We deeply appreciate Drs Z Zhi-Qian and Q-Z Zhao for providing QM7 cells and TBhsp DNA, respectively. We are most grateful for the technical help from Y Zeng, S Lian, W Xie, X Wang, Y Han, Cheng Zhang and J Wu. This study was funded by the National 973 Program of China (2009CB521805) and National Nature Science Foundation of China (81071732, 30973407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Shou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, J., Liu, C., Huang, H. et al. Suppression of breast tumor growth by DNA vaccination against phosphatase of regenerating liver 3. Gene Ther 20, 834–845 (2013). https://doi.org/10.1038/gt.2013.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.5

Keywords

This article is cited by

Search

Quick links