Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer

Abstract

Oncolytic adenovirus-mediated suicide gene therapy has been shown to improve local tumor control in preclinical tumor models and in the clinic. Although local tumor control is important, for most human cancers, new therapies must also target metastatic disease if they are to have an impact on survival. Here, we test the hypothesis that adding cytokine gene therapy to our multimodal platform improves both local and metastatic tumor control in a preclinical model of prostate cancer. An oncolytic adenovirus (Ad5-yCD/mutTKSR39rep-mIL12) expressing two suicide genes and mouse interleukin-12 (IL-12) was generated. Relative to an adenovirus lacking IL-12 (Ad5-yCD/mutTKSR39rep), Ad5-yCD/mutTKSR39rep-mIL12 improved local and metastatic tumor control in the TRAMP-C2 prostate adenocarcinoma model, resulting in a significant increase in survival. Ad5-yCD/mutTKSR39rep-mIL12 resulted in high levels of IL-12 and interferon gamma in serum and tumor, increased natural killer (NK) and cytotoxic T-lymphocyte lytic activities, and the development of tumor-specific antitumor immunity. Immune cell depletion studies indicated that both the innate and adaptive arms of immunity were required for maximal Ad5-yCD/mutTKSR39rep-mIL12 activity. The results demonstrate that the addition of IL-12 significantly improves the efficacy of oncolytic adenovirus-mediated suicide gene therapy and provide the scientific basis for future trials targeting locally aggressive cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zelefsky M, Eastman J, Sartor O, Kantoff P . Cancer of the prostate. In: DeVita V, Lawrence T, Rosenberg (eds) Cancer: Principles & Practice of Oncology. JB Lippincott: Philadelphia, PA, USA, 2008, pp 1392–1452.

    Google Scholar 

  2. Freytag S, Rogulski K, Paielli D, Gilbert J, Kim JH . A novel three-pronged approach to selectively kill cancer cells: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  3. Rogulski K, Zhang K, Kolozsvary A, Kim JH, Freytag S . Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy. Clin Cancer Res 1997; 3: 2081–2088.

    CAS  PubMed  Google Scholar 

  4. Rogulski K, Wing M, Paielli D, Gilbert J, Kim JH, Freytag S . Double suicide gene therapy augments the therapeutic efficacy of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  5. Freytag S, Paielli D, Wing M, Rogulski K, Brown S, Kolozsvary A et al. Efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in combination with radiation therapy in an orthotopic mouse prostate cancer model. Int J Radiat Oncol Biol Phys 2002; 54: 873–886.

    Article  CAS  PubMed  Google Scholar 

  6. Barton K, Paielli D, Zhang Y, Koul S, Brown S, Lu M et al. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and the ADP gene demonstrate greater efficacy without increased toxicity. Mol Ther 2006; 13: 347–356.

    Article  CAS  PubMed  Google Scholar 

  7. Freytag S, Barton K, Zhang Y, Paielli D, Tyson D, Nall C et al. Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer. Mol Ther 2007; 15: 1600–1606.

    Article  CAS  PubMed  Google Scholar 

  8. Freytag S, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62: 4968–4976.

    CAS  PubMed  Google Scholar 

  9. Freytag S, Stricker H, Pegg J, Paielli D, Pradhan D, Peabody J et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy in combination with conventional dose three-dimensional conformal radiation therapy for the treatment of newly-diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63: 7497–7506.

    CAS  PubMed  Google Scholar 

  10. Freytag S, Stricker H, Peabody J, Pegg J, Paielli D, Movsas B et al. Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. Mol Ther 2007; 15: 636–642.

    Article  CAS  PubMed  Google Scholar 

  11. Freytag S, Movsas B, Aref I, Stricker H, Peabody J, Pegg J et al. Phase I trial of replication-competent adenovirus-mediated suicide gene therapy with IMRT for prostate cancer. Mol Ther 2007; 15: 1016–1023.

    Article  CAS  PubMed  Google Scholar 

  12. Barton K, Stricker H, Brown S, Elshaikh M, Aref I, Lu M et al. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol Ther 2008; 16: 1761–1769.

    Article  CAS  PubMed  Google Scholar 

  13. Barton K, Stricker H, Elshaikh M, Pegg J, Cheng J, Zhang Y et al. Feasibility of adenovirus-mediated hNIS gene transfer and 131I radioiodine therapy as a definitive treatment for localized prostate cancer. Mol Ther 2011; 19: 1353–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freytag S, Stricker H, Movsas B, Kim JH . Prostate cancer gene therapy clinical trials. Mol Ther 2007; 15: 1042–1052.

    Article  CAS  PubMed  Google Scholar 

  15. Freytag S, Stricker H, Movsas B, Elshaikh M, Aref I, Barton K et al. Gene therapy of prostate cancer. In: Roth JA (eds) In Gene-based Therapies for Cancer. Springer: New York, NY, USA, 2010, pp 33–49.

    Chapter  Google Scholar 

  16. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  17. Del Vecchio M, Bajetta E, Canova S, Lotze M, Wesa A, Parmiani G et al. Interleukin 12: biological properties and clinical application. Clin Cancer Res 2007; 13: 4677–4685.

    Article  CAS  PubMed  Google Scholar 

  18. Colombo M, Trinchieri G . Interleukin-12 in antitumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13: 155–168.

    Article  CAS  PubMed  Google Scholar 

  19. Tahara H, Zeh H, Storkus W, Pappo I, Watkins S, Gubler U et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res 1994; 54: 182–189.

    CAS  PubMed  Google Scholar 

  20. Nasu Y, Bangma C, Hull G, Lee H-H, Hu J, Wang J et al. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Therapy 1999; 6: 338–349.

    Article  CAS  PubMed  Google Scholar 

  21. Paielli D, Wing M, Rogulski K, Gilbert J, Kolozsvary A, Kim JH et al. Evaluation of the biodistribution, persistence, toxicity, and potential of germ line transmission of a replication-competent human adenovirus following intraprostatic administration in the mouse. Mol Ther 2000; 1: 263–274.

    Article  CAS  PubMed  Google Scholar 

  22. Atkins M, Robertson M, Gordon M, Lotze M, DeCoste M, DuBois J et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 1997; 3: 409–417.

    CAS  PubMed  Google Scholar 

  23. Leonard J, Sherman M, Fisher G, Buchanan L, Larsen G, Atkins M et al. Effects of single-dose interleukin-12 exposure on interleukin-12 associated toxicity and interferon-γ production. Blood 1997; 90: 2541–2548.

    CAS  PubMed  Google Scholar 

  24. Fujita T, Timme T, Tabata K, Naruishi K, Kusaka N, Watanabe M et al. Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Therapy 2007; 14: 227–236.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Yang G, Timme T, Fujita T, Naruishi K, Frolov A et al. IL-12 gene-modified bone marrow cell therapy suppresses the development of experimental metastatic prostate cancer. Cancer Gene Ther 2007; 14: 819–827.

    Article  CAS  PubMed  Google Scholar 

  26. Egilmez N, Jong Y, Sabel M, Jacob J, Mathiowitz E, Bankert R . In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res 2000; 60: 3832–3837.

    CAS  PubMed  Google Scholar 

  27. Hill H, Conway T, Sabel M, Jong Y, Mathiowitz E, Bankert R et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res 2002; 62: 7254–7263.

    CAS  PubMed  Google Scholar 

  28. Kilinc M, Aulakh K, Nair R, Jones S, Alard P, Kosiewicz M et al. Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J Immunol 2006; 177: 6962–6973.

    Article  CAS  PubMed  Google Scholar 

  29. Kerkar S, Goldszmid R, Muranski P, Chinnasamy D, Yu Z, Reger R et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 2011; 121: 4746–4757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smyth M, Taniguchi M, Street S . The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 2000; 165: 2665–2670.

    Article  CAS  PubMed  Google Scholar 

  31. Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I et al. Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 2010; 18: 1874–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila P, Ugolini M et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res 2010; 70: 4297–4309.

    Article  CAS  PubMed  Google Scholar 

  33. Kanerva A, Nokisalmi P, Diaconu I, Koski A, Cerullo V, Liikanen I et al. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin Cancer Res 2013; 19: 2734–2744.

    Article  CAS  PubMed  Google Scholar 

  34. Heo J, Reid T, Ruo L, Breitbach C, Rose S, Bloomston M et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19: 329–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaufman H, Kim D, DeRaffele G, Mitcham J, Coffin R, Kim-Schulze S . Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 2010; 17: 718–730.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Wei-Zen Wei for protocols and help with the immunological assays. This work was supported by National Institutes of Health (NIH) grant CA160289 to SOF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S O Freytag.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freytag, S., Barton, K. & Zhang, Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther 20, 1131–1139 (2013). https://doi.org/10.1038/gt.2013.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.40

Keywords

This article is cited by

Search

Quick links