Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Multi-cistronic vector encoding optimized safety switch for adoptive therapy with T-cell receptor-modified T cells

Abstract

T-cell receptor (TCR) gene transfer is an attractive strategy to equip T cells with defined antigen-specific TCRs using short-term in vitro procedures to target both hematological malignancies and solid tumors. TCR gene transfer poses different safety issues that might warrant the inclusion of a suicide gene. High affinity TCRs may result in on-target toxicity, and off-target reactivity directed against healthy tissue can be observed due to mixed TCR dimers. Inclusion of a suicide gene as a safety switch may abrogate these unwanted toxicities. Human CD20 has been proposed as a nonimmunogenic suicide gene targeted by widely used clinical-grade anti-CD20 antibodies that can additionally function as a selection marker. However, transduction of T cells with a multi-cistronic vector encoding both TCR and CD20 resulted in poor coexpression. In this study, we demonstrated that codon optimization of TCR and CD20 resulted in profound coexpression of both the preferentially expressed antigen in melanoma (PRAME)-TCR and CD20, allowing selective as well as efficient elimination of these engineered T cells in vitro. These results demonstrate the great potential of codon optimized CD20 to be broadly used in clinical trials as a safety switch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI . Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 1999; 163: 507–513.

    CAS  PubMed  Google Scholar 

  2. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD . Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cells receptor genes. J Virol 2000; 74: 8207–8212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dembic Z, Haas W, Weiss S, McCubrey J, Kiefer H, von BH et al. Transfer of specificity by murine alpha and beta T-cells receptor genes. Nature 1986; 320: 232–238.

    Article  CAS  PubMed  Google Scholar 

  4. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cells receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  5. Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH . Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004; 199: 885–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN . Immunotherapy through TCR gene transfer. Nat Immunol 2001; 2: 957–961.

    Article  CAS  PubMed  Google Scholar 

  7. Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106: 3062–3067.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al. Gene therapy with human and mouse T-cells receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009; 114: 535–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29: 917–924.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 2006; 24: e20–e22.

    Article  PubMed  Google Scholar 

  12. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA . Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18: 843–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19: 620–626.

    Article  CAS  PubMed  Google Scholar 

  14. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 2010; 16: 1p.

    Article  Google Scholar 

  15. van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci USA 2010; 107: 10972–10977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6: 199–208.

    Article  CAS  PubMed  Google Scholar 

  17. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci USA 2006; 103: 2794–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Baren N, Chambost H, Ferrant A, Michaux L, Ikeda H, Millard I et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol 1998; 102: 1376–1379.

    Article  CAS  PubMed  Google Scholar 

  19. Matsushita M, Yamazaki R, Ikeda H, Kawakami Y . Preferentially expressed antigen of melanoma (PRAME) in the development of diagnostic and therapeutic methods for hematological malignancies. Leuk Lymphoma 2003; 44: 439–444.

    Article  CAS  PubMed  Google Scholar 

  20. Fijak M, Meinhardt A . The testis in immune privilege. Immunol Rev 2006; 213: 66–81.

    Article  CAS  PubMed  Google Scholar 

  21. Amir AL, van der Steen DM, van Loenen MM, Hagedoorn RS, de Boer R, Kester MD et al. PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cells receptor gene transfer. Clin Cancer Res 2011; 17: 5615–5625.

    Article  CAS  PubMed  Google Scholar 

  22. Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, van Veelen PA, Kloosterman-Joosten AM et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 2001; 193: 73–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

  24. Bonini C, Bondanza A, Perna SK, Kaneko S, Traversari C, Ciceri F et al. The suicide gene therapy challenge: how to improve a successful gene therapy approach. Mol Ther 2007; 15: 1248–1252.

    Article  CAS  PubMed  Google Scholar 

  25. Ciceri F, Bonini C, Marktel S, Zappone E, Servida P, Bernardi M et al. Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood 2007; 109: 4698–4707.

    Article  CAS  PubMed  Google Scholar 

  26. Berger C, Flowers ME, Warren EH, Riddell SR . Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 2006; 107: 2294–2302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Traversari C, Marktel S, Magnani Z, Mangia P, Russo V, Ciceri F et al. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 2007; 109: 4708–4715.

    Article  CAS  PubMed  Google Scholar 

  28. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365: 1673–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Introna M, Barbui AM, Bambacioni F, Casati C, Gaipa G, Borleri G et al. Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 2000; 11: 611–620.

    Article  CAS  PubMed  Google Scholar 

  30. Serafini M, Manganini M, Borleri G, Bonamino M, Imberti L, Biondi A et al. Characterization of CD20-transduced T lymphocytes as an alternative suicide gene therapy approach for the treatment of graft-versus-host disease. Hum Gene Ther 2004; 15: 63–76.

    Article  CAS  PubMed  Google Scholar 

  31. Griffioen M, van Egmond HM, Barnby-Porritt H, van der Hoorn MA, Hagedoorn RS, Kester MG et al. Genetic engineering of virus-specific T cells with T-cells receptors recognizing minor histocompatibility antigens for clinical application. Haematologica 2008; 93: 1535–1543.

    Article  CAS  PubMed  Google Scholar 

  32. Griffioen M, van Egmond EH, Kester MG, Willemze R, Falkenburg JH, Heemskerk MH . Retroviral transfer of human CD20 as a suicide gene for adoptive T-cells therapy. Haematologica 2009; 94: 1316–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 2004; 22: 589–594.

    Article  CAS  PubMed  Google Scholar 

  34. Vogler I, Newrzela S, Hartmann S, Schneider N, von Laer D, Koehl U et al. An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified t cells for adoptive immunotherapy. Mol Ther 2010; 18: 1330–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burrows SR, Kienzle N, Winterhalter A, Bharadwaj M, Altman JD, Brooks A . Peptide-MHC class I tetrameric complexes display exquisite ligand specificity. J Immunol 2000; 165: 6229–6234.

    Article  CAS  PubMed  Google Scholar 

  36. Heemskerk MH, Hagedoorn RS, van der Hoorn MA, van der Veken LT, Hoogeboom M, Kester MG et al. Efficiency of T-cells receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 2007; 109: 235–243.

    Article  CAS  PubMed  Google Scholar 

  37. Heemskerk MH, Blom B, Nolan G, Stegmann AP, Bakker AQ, Weijer K et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 1997; 186: 1597–1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Cancer Society (grant NKB 2007–3927) and ZonMw (grant ZonMw 433.00.001). We thank Michel Kester, Dirk van der Steen, Guido de Roo and Menno van der Hoorn for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M van Loenen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Loenen, M., de Boer, R., Hagedoorn, R. et al. Multi-cistronic vector encoding optimized safety switch for adoptive therapy with T-cell receptor-modified T cells. Gene Ther 20, 861–867 (2013). https://doi.org/10.1038/gt.2013.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.4

Keywords

Search

Quick links