Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Viral dose, radioiodide uptake, and delayed efflux in adenovirus-mediated NIS radiovirotherapy correlates with treatment efficacy

Abstract

We have constructed a prostate tumor-specific conditionally replicating adenovirus (CRAd), named Ad5PB_RSV-NIS, which expresses the human sodium iodine symporter (NIS) gene. LNCaP tumors were established in nude mice and infected with this CRAd to study tumor viral spread, NIS expression, and efficacy. Using quantitative PCR, we found a linear correlation between the viral dose and viral genome copy numbers recovered after tumor infection. Confocal microscopy showed a linear correlation between adenovirus density and NIS expression. Radioiodide uptake vs virus dose-response curves revealed that the dose response curve was not linear and displayed a lower threshold of detection at 107 vp (virus particles) and an upper plateau of uptake at 1011 vp. The outcome of radiovirotherapy was highly dependent upon viral dose. At 1010 vp, no significant differences were observed between virotherapy alone or radiovirotherapy. However, when radioiodide therapy was combined with virotherapy at a dose of 1011 vp, significant improvement in survival was observed, indicating a relationship between viral dose-response uptake and the efficacy of radiovirotherapy. The reasons behind the differences in radioiodide therapy efficacy can be ascribed to more efficient viral tumor spread and a decrease in the rate of radioisotope efflux. Our results have important implications regarding the desirable and undesirable characteristics of vectors for clinical translation of virus-mediated NIS transfer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. [Erratum appears in CA Cancer J Clin 2011; 61: 134]. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Chiocca EA, Broaddus WC, Gillies GT, Visted T, Lamfers ML . Neurosurgical delivery of chemotherapeutics, targeted toxins, genetic and viral therapies in neuro-oncology. J Neurooncol 2004; 69: 101–117.

    Article  PubMed  Google Scholar 

  3. McCormick F . Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer 2001; 1: 130–141.

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto M, Curiel DT . Cancer gene therapy. Technol Cancer Res Treat 2005; 4: 315–330.

    Article  CAS  PubMed  Google Scholar 

  5. Carrasco N . Iodide transport in the thyroid gland. Biochim Biophys Acta 1993; 1154: 65–82.

    Article  CAS  PubMed  Google Scholar 

  6. Jhiang SM, Cho JY, Ryu KY, DeYoung BR, Smanik PA, McGaughy VR et al. An immunohistochemical study of Na+/I- symporter in human thyroid tissues and salivary gland tissues. Endocrinology 1998; 139: 4416–4419.

    Article  CAS  PubMed  Google Scholar 

  7. Van Nostrand D, Wartofsky L . Radioiodine in the treatment of thyroid cancer. Endocrinol Metab Clin North Am 2007; 36: 807–822; vii-viii.

    Article  PubMed  Google Scholar 

  8. Mazzaferri EL . Carcinoma of follicular epithelium: Radioiodine and other treatments and outcomes. In: Braverman LE, Utiger RD, (eds). The Thyroid: A Fundamental and Clinical Text. 7th ed. Lippincott–Raven Philadelphia pp 922–945 1996.

    Google Scholar 

  9. Trujillo MA, Oneal MJ, McDonough S, Qin R, Morris JC . A probasin promoter, conditionally replicating adenovirus that expresses the sodium iodide symporter (NIS) for radiovirotherapy of prostate cancer. Gene Therapy 2010; 17: 1325–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scholz IV, Cengic N, Baker CH, Harrington KJ, Maletz K, Bergert ER et al. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer. Gene Therapy 2005; 12: 272–280.

    Article  CAS  PubMed  Google Scholar 

  11. Trujillo M, Oneal M, Davydova J, Bergert E, Yamamoto M, Morris J . Construction of an MUC-1 promoter driven, conditionally replicating adenovirus that expresses the sodium iodide symporter for gene therapy of breast cancer. Breast Cancer Res 2009; 11: R53.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dwyer RM, Schatz SM, Bergert ER, Myers RM, Harvey ME, Classic KL et al. A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide symporter for radioiodide imaging and therapy of locally recurrent prostate cancer. Mol Ther 2005; 12: 835–841.

    Article  CAS  PubMed  Google Scholar 

  13. Morris JC http://clinicaltrials.gov/ct/show/NCT00788307〉 2009.

  14. Carlson SK, Classic KL, Hadac EM, Dingli D, Bender CE, Kemp BJ et al. Quantitative molecular imaging of viral therapy for pancreatic cancer using an engineered measles virus expressing the sodium-iodide symporter reporter gene. AJR Am J Roentgenol 2009; 192: 279–287.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carlson SK, Classic KL, Hadac EM, Bender CE, Kemp BJ, Lowe VJ et al. In vivo quantitation of intratumoral radioisotope uptake using micro-single photon emission computed tomography/computed tomography. Mol Imaging Biol 2006; 8: 324 332.

    Article  PubMed  Google Scholar 

  16. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G . Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002; 13: 1723–1735.

    Article  CAS  PubMed  Google Scholar 

  17. Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G . Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 2004; 9: 436–442.

    Article  CAS  PubMed  Google Scholar 

  18. Dingli D, Peng KW, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  PubMed  Google Scholar 

  19. Perron B, Rodriguez AM, Leblanc G, Pourcher T . Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues. J Endocrinol 2001; 170: 185–196.

    Article  CAS  PubMed  Google Scholar 

  20. Penheiter AR, Griesmann GE, Federspiel MJ, Dingli D, Russell SJ, Carlson SK . Pinhole micro-SPECT/CT for noninvasive monitoring and quantitation of oncolytic virus dispersion and percent infection in solid tumors. Gene Therapy 2011; 19: 279–287.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carlin S, Cunningham SH, Boyd M, McCluskey AG, Mairs RJ . Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two-and three-dimensional models. Cancer Gene Ther 2000; 7: 1529–1536.

    Article  CAS  PubMed  Google Scholar 

  22. Tozer TN . Concepts basic to pharmacokinetics. Pharmacol Ther 1981; 12: 109–131.

    Article  CAS  PubMed  Google Scholar 

  23. Dingli D, Bergert ER, Bajzer Z, O'Connor MK, Russell SJ, Morris JC . Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter. Biochem Biophys Res Commun 2004; 325: 157–166.

    Article  CAS  PubMed  Google Scholar 

  24. Herrmann F . Cancer gene therapy: principles, problems, and perspectives. J Mol Med 1995; 73: 157–163.

    CAS  PubMed  Google Scholar 

  25. Waehler R, Russell SJ, Curiel DT . Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8: 573–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barton KN, Stricker H, Elshaikh MA, Pegg J, Cheng J, Zhang Y et al. Feasibility of adenovirus-mediated hNIS gene transfer and 131I radioiodine therapy as a definitive treatment for localized prostate cancer. Mol Ther 2011; 19: 1353–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boucher Y, Jain RK . Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 1992; 52: 5110–5114.

    CAS  PubMed  Google Scholar 

  28. Wang Y, Yuan F . Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement. Ann Biomed Eng 2006; 34: 114–127.

    Article  CAS  PubMed  Google Scholar 

  29. Kruyt FAE, Curiel DT . Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther 2002; 13: 485–495.

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto M, Curiel DT . Current issues and future directions of oncolytic adenoviruses. Mol Ther 2010; 18: 243–250.

    Article  CAS  PubMed  Google Scholar 

  31. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  32. Barton KN, Tyson D, Stricker H, Lew YS, Heisey G, Koul S et al. GENIS: gene expression of sodium iodide symporter for noninvasive imaging of gene therapy vectors and quantification of gene expression in vivo. Mol Ther 2003; 8: 508–518.

    Article  CAS  PubMed  Google Scholar 

  33. Bazan-Peregrino M, Carlisle RC, Hernandez-Alcoceba R, Iggo R, Homicsko K, Fisher KD et al. Comparison of molecular strategies for breast cancer virotherapy using oncolytic adenovirus. Hum Gene Ther 2008; 19: 873–886.

    Article  CAS  PubMed  Google Scholar 

  34. Doronin K, Toth K, Kuppuswamy M, Krajcsi P, Tollefson AE, Wold WS . Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology 2003; 305: 378–387.

    Article  CAS  PubMed  Google Scholar 

  35. Doronin K, Shashkova EV, May SM, Hofherr SE, Barry MA . Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum Gene Ther 2009; 20: 975–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shashkova EV, May SM, Barry MA . Characterization of human adenovirus serotypes 5, 6, 11, and 35 as anticancer agents. Virology 2009; 394: 311–320.

    Article  CAS  PubMed  Google Scholar 

  37. Weaver EA, Barry MA . Effects of shielding adenoviral vectors with polyethylene glycol on vector-specific and vaccine-mediated immune responses. Hum Gene Ther 2008; 19: 1369–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Spitzweg C, Dietz AB, O'Connor MK, Bergert ER, Tindall DJ, Young CY et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Therapy 2001; 8: 1524–1531.

    Article  CAS  PubMed  Google Scholar 

  39. Trujillo MA, Jiang SW, Tarara JE, Eberhardt NL . Clustering of the B cell receptor is not required for the apoptotic response. DNA Cell Biol 2003; 22: 525–531.

    Article  CAS  PubMed  Google Scholar 

  40. Khoo TK, Coenen MJ, Schiefer AR, Kumar S, Bahn RS . Evidence for enhanced Thy-1 (CD90) expression in orbital fibroblasts of patients with Graves’ ophthalmopathy. Thyroid 2008; 18: 1291–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Tracy Decklever at the Nuclear Medicine Animal Imaging Resource Mayo Clinic, Rochester, MN for technical help and Dr David Dingli at the Department of Molecular Medicine, Mayo Clinic, Rochester, MN for helpfull discussion.

This work was supported by Prostate SPORE Grant P50 CA 091956; DJ Tindall, PI; JC Morris Project Director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Morris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trujillo, M., Oneal, M., McDonough, S. et al. Viral dose, radioiodide uptake, and delayed efflux in adenovirus-mediated NIS radiovirotherapy correlates with treatment efficacy. Gene Ther 20, 567–574 (2013). https://doi.org/10.1038/gt.2012.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.71

Keywords

This article is cited by

Search

Quick links