Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Zinc finger nucleases: looking toward translation

Abstract

Genetic engineering has emerged as a powerful mechanism for understanding biological systems and a potential approach for redressing congenital disease. Alongside, the emergence of these technologies in recent decades has risen the complementary analysis of the ethical implications of genetic engineering techniques and applications. Although viral-mediated approaches have dominated initial efforts in gene transfer (GT) methods, an emerging technology involving engineered restriction enzymes known as zinc finger nucleases (ZFNs) has become a powerful new methodology for gene editing. Given the advantages provided by ZFNs for more specific and diverse approaches in gene editing for basic science and clinical applications, we discuss how ZFN research can address some of the ethical and scientific questions that have been posed for other GT techniques. This is of particular importance, given the momentum currently behind ZFNs in moving into phase I clinical trials. This study provides a historical account of the origins of ZFN technology, an analysis of current techniques and applications, and an examination of the ethical issues applicable to translational ZFN genetic engineering in early phase clinical trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Watson JD, Crick FH . Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953; 171: 737–738.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen SN, Chang AC, Boyer HW, Helling RB . Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 1973; 70: 3240–3244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD . Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11: 636–646.

    Article  CAS  PubMed  Google Scholar 

  4. Collin J, Lako M . Concise review: putting a finger on stem cell biology: zinc finger nuclease-driven targeted genetic editing in human pluripotent stem cells. Stem Cells 2011; 29: 1021–1033.

    Article  CAS  PubMed  Google Scholar 

  5. Händel EM, Cathomen T . Zinc-finger nuclease based genome surgery: it's all about specificity. Curr Gene Ther 2011; 11: 28–37.

    Article  PubMed  Google Scholar 

  6. King NMP, Cohen-Haguenauer O . En route to ethical recommendations for gene transfer clinical trials. Mol Ther 2008; 16: 432–438.

    Article  CAS  PubMed  Google Scholar 

  7. King NMP . RAC oversight of gene transfer research: a model worth extending? J Law Med Ethics 2002; 30: 381–389.

    Article  PubMed  Google Scholar 

  8. Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93: 1156–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klug A, Schwabe JW . Protein motifs 5. Zinc fingers. FASEB J 1995; 9: 597–604.

    Article  CAS  PubMed  Google Scholar 

  10. Tupler R, Perini G, Green MR . Expressing the human genome. Nature 2001; 409: 832–833.

    Article  CAS  PubMed  Google Scholar 

  11. Miller J, McLachlan AD, Klug A . Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 1985; 4: 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoeijmakers JH . Genome maintenance mechanisms for preventing cancer. Nature 2001; 411: 366–374.

    Article  CAS  PubMed  Google Scholar 

  13. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 2011; 108: 7052–7057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 2010; 107: 12028–12033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D . Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 2006; 172: 2391–2403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morton J, Davis MW, Jorgensen EM, Carroll D . Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA 2006; 103: 16370–16375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA . Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008; 26: 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 2009; 325: 433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci USA 2007; 104: 3055–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    Article  CAS  PubMed  Google Scholar 

  21. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009; 27: 851–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L et al. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 2006; 12: 787–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kohn DB, Sadelain M, Glorioso JC . Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 2003; 3: 477–488.

    Article  CAS  PubMed  Google Scholar 

  24. Persons DA . Update on gene therapy for hemoglobin disorders. Curr Opin Mol Ther 2003; 5: 508–516.

    CAS  PubMed  Google Scholar 

  25. Kohn DB, Sadelain M, Dunbar C, Bodine D, Kiem HP, Candotti F et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther 2003; 8: 180–187.

    Article  CAS  PubMed  Google Scholar 

  26. Porteus MH, Connelly JP, Pruett SM . A look to future directions in gene therapy research for monogenic diseases. PLoS Genet 2006; 2: e133.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thrasher AJ, Gaspar HB, Baum C, Modlich U, Schambach A, Candotti F et al. Gene therapy: X-SCID transgene leukaemogenicity. Nature 2006; 443: E5–E6; discussion E6-E7.

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 2011; 475: 217–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 2011; 8: 753–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 2011; 8: 861–869.

    Article  CAS  PubMed  Google Scholar 

  31. Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G . Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 2007; 25: 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  32. Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E et al. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 2010; 105: 330–340.

    Article  CAS  PubMed  Google Scholar 

  33. Liu PQ, Chan E, Cost GJ, Zhang L, Wang J, Miller JC et al. Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng 2009; 106: 97–105.

    Google Scholar 

  34. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28: 839–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26: 808–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25: 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  37. King NMP . Rewriting the ‘points to consider’: the ethical impact of guidance document language. Hum Gene Ther 1999; 10: 133–139.

    Article  CAS  PubMed  Google Scholar 

  38. Henderson GE, Easter MM, Zimmer C, King NMP, Davis AM, Rothschild BB et al. Therapeutic misconception in early phase gene transfer trials. Soc Sci Med 2006; 62: 239–253.

    Article  PubMed  Google Scholar 

  39. Henderson GE, Churchill LR, Davis AM, Easter MM, Grady C, Joffe S et al. Clinical trials and medical care: defining the therapeutic misconception. PLoS Medicine 2007; 4: e324.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dresser R . Stem cell research as innovation: expanding the ethical and policy conversation. J Law Med Ethics 2010; 38: 332–341.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Caplan AL . If it's broken, shouldn’t it be fixed? Informed consent and initial clinical trials of gene therapy. Hum Gene Ther 2008; 19: 5–6.

    Article  CAS  PubMed  Google Scholar 

  42. www.genetherapynet.com. FDA lifts ban on trial after investigating death, 2007.

  43. Henderson GE, Davis AM, King NMP, Easter MM, Zimmer CR, Rothschild BB et al. Uncertain benefit: investigators’ views and communications in early phase gene transfer trials[ast]. Mol Ther 2004; 10: 225–231.

    Article  CAS  PubMed  Google Scholar 

  44. Kimmelman J, Palmour N . Therapeutic optimism in the consent forms of phase 1 gene transfer trials: an empirical analysis. J Med Ethics 2005; 4: 209–214.

    Article  Google Scholar 

  45. Kimmelman J . Recent developments in gene transfer: risk and ethics. Br Med J 2005; 330: 79–82.

    Article  CAS  Google Scholar 

  46. Kimmelman J, London AJ . Predicting harms and benefits in translational trials: ethics, evidence, and uncertainty. PLoS Med 2011; 8: e1001010.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I . FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 1998; 95: 10570–10575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T . Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 2007; 25: 786–793.

    Article  CAS  PubMed  Google Scholar 

  49. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25: 778–785.

    Article  CAS  PubMed  Google Scholar 

  50. Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S . Creating designed zinc-finger nucleases with minimal cytotoxicity. J Mol Biol 2011; 405: 630–641.

    Article  CAS  PubMed  Google Scholar 

  51. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 2011; 8: 74–79.

    Article  CAS  PubMed  Google Scholar 

  52. Kustikova OS, Schiedlmeier B, Brugman MH, Stahlhut M, Bartels S, Li Z et al. Cell-intrinsic and vector-related properties cooperate to determine the incidence and consequences of insertional mutagenesis. Mol Ther 2009; 17: 1537–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M et al. Resistance of mature T cells to oncogene transformation. Blood 2008; 112: 2278–2286.

    Article  CAS  PubMed  Google Scholar 

  54. Cathomen T, Joung JK . Zinc-finger nucleases: the next generation emerges. Mol Ther 2008; 16: 1200–1207.

    Article  CAS  PubMed  Google Scholar 

  55. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 2011; 29: 816–823.

    Article  CAS  PubMed  Google Scholar 

  56. Pattanayak V, Ramirez CL, Joung JK, Liu DR . Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011; 8: 765–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mussolino C, Cathomen T . On target? Tracing zinc-finger-nuclease specificity. Nat Methods 2011; 8: 725–726.

    Article  CAS  PubMed  Google Scholar 

  58. Resnik DB, Steinkraus HB, Langer PJ . Human Germline Gene Therapy: Scientific, Moral and Political Issues. RG Landes Company: Austin, TX, 1999.

    Google Scholar 

  59. Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T . A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011; 39: 9283–9293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carroll D . Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Therapy 2008; 15: 1463–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yarborough M, Sharp RR . Public trust and research a decade later: what have we learned since Jesse Gelsinger's death? Mol Genet Metab 2009; 97: 4–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr S Malia Fullerton and Dr Shondra Miller for their valued input on the bioethical and scientific content of the manuscript, respectively. We also thank Dr Dana Carroll for critical analysis of the technical and scientific content of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N J Palpant.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palpant, N., Dudzinski, D. Zinc finger nucleases: looking toward translation. Gene Ther 20, 121–127 (2013). https://doi.org/10.1038/gt.2012.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.2

Keywords

This article is cited by

Search

Quick links