Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells

Abstract

Achieving transgene integration into preselected genomic sites is currently one of the central tasks in stem cell gene therapy. A strategy to mediate such targeted integration involves site-specific endonucleases. Two genomic sites within the MBS85 and chemokine (C-C motif) receptor 5 (CCR5) genes (AAVS1 and CCR5 zinc-finger nuclease (CCR5-ZFN) sites, respectively) have recently been suggested as potential target regions for integration as their disruption has no functional consequence. We hypothesized that efficient transgene integration maybe affected by DNA accessibility of endonucleases and therefore studied the transcriptional and chromatin status of the AAVS1 and CCR5 sites in eight human induced pluripotent stem (iPS) cell lines and pooled CD34+ hematopoietic stem cells (HSCs). Matrix chromatin immunoprecipitation (ChIP) assays demonstrated that the CCR5 site and surrounding regions possessed a predominantly closed chromatin configuration consistent with its transcriptional inactivity in these cell types. In contrast, the AAVS1 site was located within a transcriptionally active region and exhibited an open chromatin configuration in both iPS cells and HSCs. To show that the AAVS1 site is readily amendable to genome modification, we expressed Rep78, an AAV2-derived protein with AAVS1-specific endonuclease activity, in iPS cells after adenoviral gene transfer. We showed that Rep78 efficiently associated with the AAVS1 site and triggered genome modifications within this site. On the other hand, binding to and modification of the CCR5-ZFN site by a ZFN was relatively inefficient. Our data suggest a critical influence of chromatin structure on efficacy of site-specific endonucleases used for genome editing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Voigt K, Izsvak Z, Ivics Z . Targeted gene insertion for molecular medicine. J Mol Med 2008; 86: 1205–1219.

    Article  CAS  Google Scholar 

  2. Kramer O, Klausing S, Noll T . Methods in mammalian cell line engineering: from random mutagenesis to sequence-specific approaches. Appl Microbiol Biotechnol 2010; 88: 425–436.

    Article  Google Scholar 

  3. Miller DG, Petek LM, Russell DW . Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 2004; 36: 767–773.

    Article  CAS  Google Scholar 

  4. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 2011; 475: 217–221.

    Article  CAS  Google Scholar 

  5. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA et al. Gene editing in human stem cells using zinc-finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25: 1298–1306.

    Article  CAS  Google Scholar 

  6. Wang H, Lieber A . A helper-dependent capsid-modified adenovirus vector expressing adeno-associated virus rep78 mediates site-specific integration of a 27-kilobase transgene cassette. J Virol 2006; 80: 11699–11709.

    Article  CAS  Google Scholar 

  7. Wang H, Shayakhmetov DM, Leege T, Harkey M, Li Q, Papayannopoulou T et al. A capsid-modified helper-dependent adenovirus vector containing the beta-globin locus control region displays a nonrandom integration pattern and allows stable, erythroid-specific gene expression. J Virol 2005; 79: 10999–11013.

    Article  CAS  Google Scholar 

  8. Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F . Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther 2004; 10: 660–670.

    Article  CAS  Google Scholar 

  9. Suzuki K, Mitsui K, Aizawa E, Hasegawa K, Kawase E, Yamagishi T et al. Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci USA 2008; 105: 13781–13786.

    Article  CAS  Google Scholar 

  10. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28: 839–847.

    Article  CAS  Google Scholar 

  11. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011; 29: 731–734.

    Article  CAS  Google Scholar 

  12. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–377.

    Article  CAS  Google Scholar 

  13. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360: 692–698.

    Article  Google Scholar 

  14. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26: 808–816.

    Article  CAS  Google Scholar 

  15. Benabdallah BF, Allard E, Yao S, Friedman G, Gregory PD, Eliopoulos N et al. Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 2010; 12: 394–399.

    Article  CAS  Google Scholar 

  16. Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V et al. Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun 2009; 388: 56–61.

    Article  CAS  Google Scholar 

  17. Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS . Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 2009; 19: 1279–1288.

    Article  CAS  Google Scholar 

  18. Kotin RM, Linden RM, Berns KI . Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 1992; 11: 5071–5078.

    Article  CAS  Google Scholar 

  19. Smith JR, Maguire S, Davis LA, Alexander M, Yang F, Chandran S et al. Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells 2008; 26: 496–504.

    Article  CAS  Google Scholar 

  20. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009; 27: 851–857.

    Article  CAS  Google Scholar 

  21. Henckaerts E, Dutheil N, Zeltner N, Kattman S, Kohlbrenner E, Ward P et al. Site-specific integration of adeno-associated virus involves partial duplication of the target locus. Proc Natl Acad Sci USA 2009; 106: 7571–7576.

    Article  CAS  Google Scholar 

  22. Meneses P, Berns KI, Winocour E . DNA sequence motifs which direct adeno-associated virus site-specific integration in a model system. J Virol 2000; 74: 6213–6216.

    Article  CAS  Google Scholar 

  23. Cortes ML, Oehmig A, Saydam O, Sanford JD, Perry KF, Fraefel C et al. Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Mol Ther 2008; 16: 81–88.

    Article  CAS  Google Scholar 

  24. Howden SE, Voullaire L, Wardan H, Williamson R, Vadolas J . Site-specific, Rep-mediated integration of the intact beta-globin locus in the human erythroleukaemic cell line K562. Gene Therapy 2008; 15: 1372–1383.

    Article  CAS  Google Scholar 

  25. Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008; 2: 437–447.

    Article  CAS  Google Scholar 

  26. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T . Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 2006; 10: 105–116.

    Article  CAS  Google Scholar 

  27. Carter MG, Sharov AA, VanBuren V, Dudekula DB, Carmack CE, Nelson C et al. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray. Genome Biol 2005; 6: R61.

    Article  Google Scholar 

  28. Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 2009; 460: 863–868.

    Article  CAS  Google Scholar 

  29. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD . HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 2007; 17: 1186–1194.

    Article  CAS  Google Scholar 

  30. Huser D, Gogol-Doring A, Lutter T, Weger S, Winter K, Hammer EM et al. Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 2010; 6: e1000985.

    Article  Google Scholar 

  31. Djuric U, Ellis J . Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Res Ther 2010; 1: 3.

    Article  Google Scholar 

  32. Chamberlain JR, Deyle DR, Schwarze U, Wang P, Hirata RK, Li Y et al. Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol Ther 2008; 16: 187–193.

    Article  CAS  Google Scholar 

  33. Deyle DR, Khan IF, Raen G, Wang P, Kho J, Schwarze U et al. Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Mol Ther 2011; 20: 204–213.

    Article  Google Scholar 

  34. Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM et al. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet 2010; 6: e1001181.

    Article  Google Scholar 

  35. Stadler B, Ivanovska I, Mehta K, Song S, Nelson A, Tan Y et al. Characterization of microRNAs involved in embryonic stem cell states. Stem Cells Dev 2010; 19: 935–950.

    Article  CAS  Google Scholar 

  36. Chang KH, Huang A, Hirata RK, Wang PR, Russell DW, Papayannopoulou T . Globin phenotype of erythroid cells derived from human induced pluripotent stem cells. Blood 2010; 115: 2553–2554.

    Article  CAS  Google Scholar 

  37. Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 2009; 27: 1033–1037.

    Article  CAS  Google Scholar 

  38. Lieberman PM . Chromatin regulation of virus infection. Trends Microbiol 2006; 14: 132–140.

    Article  CAS  Google Scholar 

  39. Flanagin S, Nelson JD, Castner DG, Denisenko O, Bomsztyk K . Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 2008; 36: e17.

    Article  Google Scholar 

  40. Nelson JD, Denisenko O, Bomsztyk K . Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 2006; 1: 179–185.

    Article  CAS  Google Scholar 

  41. Taylor JA, Vojtech L, Bahner I, Kohn DB, Laer DV, Russell DW et al. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication. Mol Ther 2008; 16: 46–51.

    Article  CAS  Google Scholar 

  42. Dutheil N, Henckaerts E, Kohlbrenner E, Linden RM . Transcriptional analysis of the adeno-associated virus integration site. J Virol 2009; 83: 12512–12525.

    Article  CAS  Google Scholar 

  43. Tuve S, Wang H, Ware C, Liu Y, Gaggar A, Bernt K et al. A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 2006; 80: 12109–12120.

    Article  CAS  Google Scholar 

  44. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    Article  CAS  Google Scholar 

  45. Tashiro K, Kawabata K, Inamura M, Takayama K, Furukawa N, Sakurai F et al. Adenovirus vector-mediated efficient transduction into human embryonic and induced pluripotent stem cells. Cell Reprogram 2010; 12: 501–507.

    Article  CAS  Google Scholar 

  46. Rufaihah AJ, Huang NF, Jame S, Lee J, Nguyen HN, Byers B et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 2011; 31: e72–e79.

    Article  CAS  Google Scholar 

  47. Samavarchi-Tehrani P, Golipour A, David L, Sung H-k, Beyer TA, Datti A et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010; 7: 64–77.

    Article  CAS  Google Scholar 

  48. Wang H, Li ZY, Liu Y, Persson J, Beyer I, Moller T et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14. Nat Med 2011; 17: 96–104.

    Article  Google Scholar 

  49. Ohgushi M, Matsumura M, Eiraku M, Murakami K, Aramaki T, Nishiyama A et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 2010; 7: 225–239.

    Article  CAS  Google Scholar 

  50. Casto BC, Armstrong JA, Atchison RW, Hammon WM . Studies on the relationship between adeno-associated virus type 1 (AAV-1) and adenoviruses. II. Inhibition of adenovirus plaques by AAV; its nature and specificity. Virology 1967; 33: 452–458.

    Article  CAS  Google Scholar 

  51. Moosmann P, Georgiev O, Thiesen HJ, Hagmann M, Schaffner W . Silencing of RNA polymerases II and III-dependent transcription by the KRAB protein domain of KOX1, a Kruppel-type zinc finger factor. Biol Chem 1997; 378: 669–677.

    Article  CAS  Google Scholar 

  52. Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P . A versatile tool for conditional gene expression and knockdown. Nat Methods 2006; 3: 109–116.

    Article  CAS  Google Scholar 

  53. Drew HR, Lockett LJ, Both GW . Increased complexity of wild-type adeno-associated virus-chromosomal junctions as determined by analysis of unselected cellular genomes. J Gen Virol 2007; 88 (Part 6): 1722–1732.

    Article  CAS  Google Scholar 

  54. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25: 778–785.

    Article  CAS  Google Scholar 

  55. Shimizu K, Sakurai F, Machitani M, Katayama K, Mizuguchi H . Quantitative analysis of the leaky expression of adenovirus genes in cells transduced with a replication-incompetent adenovirus vector. Mol Pharm 2011; 8: 1430–1435.

    Article  CAS  Google Scholar 

  56. John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 2011; 43: 264–268.

    Article  CAS  Google Scholar 

  57. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010; 6: 479–491.

    Article  CAS  Google Scholar 

  58. Stadtfeld M, Hochedlinger K . Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24: 2239–2263.

    Article  CAS  Google Scholar 

  59. Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J . Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 2009; 41: 376–381.

    Article  CAS  Google Scholar 

  60. Barrand S, Andersen IS, Collas P . Promoter-exon relationship of H3 lysine 9, 27, 36 and 79 methylation on pluripotency-associated genes. Biochem Biophys Res Commun 2010; 401: 611–617.

    Article  CAS  Google Scholar 

  61. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 2011; 8: 861–869.

    Article  CAS  Google Scholar 

  62. Lieber A, He CY, Kirillova I, Kay MA . Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J Virol 1996; 70: 8944–8960.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Avanzi GC, Lista P, Giovinazzo B, Miniero R, Saglio G, Benetton G et al. Selective growth response to IL-3 of a human leukaemic cell line with megakaryoblastic features. Br J Haematol 1988; 69: 359–366.

    Article  CAS  Google Scholar 

  64. Yoon-Robarts M, Linden RM . Identification of active site residues of the adeno-associated virus type 2 Rep endonuclease. J Biol Chem 2003; 278: 4912–4918.

    Article  CAS  Google Scholar 

  65. Trempe JP, Mendelson E, Carter BJ . Characterization of adeno-associated virus rep proteins in human cells by antibodies raised against rep expressed in Escherichia coli. Virology 1987; 161: 18–28.

    Article  CAS  Google Scholar 

  66. Shayakhmetov DM, Lieber A . Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 2000; 74: 10274–10286.

    Article  CAS  Google Scholar 

  67. Wang H, Shayakhmetov DM, Leege T, Harkey M, Li Q, Papayannopoulou T et al. A capsid-modified helper-dependent adenovirus vector containing the {beta}-globin locus control region displays a nonrandom integration pattern and allows stable, erythroid-specific gene expression. J Virol 2005; 79: 10999–11013.

    Article  CAS  Google Scholar 

  68. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19 [published erratum appears in EMBO J 1992 Mar;11(3):1228]. EMBO J 1991; 10: 3941–3950.

    Article  CAS  Google Scholar 

  69. Khan IF, Hirata RK, Wang PR, Li Y, Kho J, Nelson A et al. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 2010; 18: 1192–1199.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH grants R21HL094994 (AL), R01 HLA078836 (AL), R01CA136487 (AL), R01CA141018 (KB), R01DK083310 (KB), R37DK45978 (KB) and NIH/NIDDK DK grant R37-45978. We thank Drs. Linden and Trempe for providing Rep78 antibodies. We are grateful to Carol Ware and the members of the Ellison Stem Cell Core Laboratory of the Institute of Stem Cell and Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lieber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rensburg, R., Beyer, I., Yao, XY. et al. Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells. Gene Ther 20, 201–214 (2013). https://doi.org/10.1038/gt.2012.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.25

Keywords

This article is cited by

Search

Quick links