Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Serum amyloid P component facilitates DNA clearance and inhibits plasmid transfection: implications for human DNA vaccine

Abstract

The demonstration that naked plasmid DNA can induce strong immune responses in mice has attracted considerable attention in the vaccine community. However, similar immunizations have been less/not effective in clinical trials during the past decade, and the underlying mechanisms remain unknown. In this study, we hypothesized that some DNA-binding proteins in human serum may serve as host barriers, responsible for the low efficiency of plasmids’ transfection in vivo. Using proteomics, we showed that human serum amyloid P component (hSAP) is specifically present in human DNA–protein complexes. Further analysis indicated that hSAP effectively binds plasmid DNA, inhibits DNA transfection into somatic cells and facilitates the endocytosis of DNA by macrophages, whereas mouse SAP (mSAP) has similar, but much weaker, activities. In the presence of hSAP, the plasmid DNA expression in vivo and plasmid DNA-induced immune responses also significantly decreased. Therefore, our results suggest that hSAP contributes to extracellular DNA clearance and the inhibition of plasmid DNA transfection in vivo. This mechanism may be partly responsible for the insufficient immune responses to DNA vaccination in human beings; therefore, it may serve as a novel target for the improvement of DNA vaccines and DNA-based gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA . DNA vaccines. Annu Rev Immunol 1997; 15: 617–648.

    Article  CAS  Google Scholar 

  2. Douek DC, Kwong PD, Nabel GJ . The rational design of an AIDS vaccine. Cell 2006; 124: 677–681.

    Article  CAS  Google Scholar 

  3. Liu MA, Ulmer JB . Human clinical trials of plasmid DNA vaccines. Adv Genet 2005; 55: 25–40.

    Article  CAS  Google Scholar 

  4. Donnelly JJ, Wahren B, Liu MA . DNA vaccines: progress and challenges. J Immunol 2005; 175: 633–639.

    Article  CAS  Google Scholar 

  5. Hokey DA, Weiner DB . DNA vaccines for HIV: challenges and opportunities. Springer Semin Immunopathol 2006; 28: 267–279.

    Article  CAS  Google Scholar 

  6. Calarota S, Bratt G, Nordlund S, Hinkula J, Leandersson AC, Sandstrom E et al. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet 1998; 351: 1320–1325.

    Article  CAS  Google Scholar 

  7. Wang R, Doolan DL, Le TP, Hedstrom RC, Coonan KM, Charoenvit Y et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 1998; 282: 476–480.

    Article  CAS  Google Scholar 

  8. Leitner WW, Ying H, Restifo NP . DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 1999; 18: 765–777.

    Article  CAS  Google Scholar 

  9. Ishii KJ, Suzuki K, Coban C, Takeshita F, Itoh Y, Matoba H et al. Genomic DNA released by dying cells induces the maturation of APCs. J Immunol 2001; 167: 2602–2607.

    Article  CAS  Google Scholar 

  10. Medzhitov R . Recognition of microorganisms and activation of the immune response. Nature 2007; 449: 819–826.

    Article  CAS  Google Scholar 

  11. Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S . Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Med 2005; 202: 1333–1339.

    Article  CAS  Google Scholar 

  12. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005; 202: 1131–1139.

    Article  CAS  Google Scholar 

  13. Goodnow CC . Immunology. Discriminating microbe from self suffers a double toll. Science 2006; 312: 1606–1608.

    Article  Google Scholar 

  14. Pepys MB, Butler PJ . Serum amyloid P component is the major calcium-dependent specific DNA binding protein of the serum. Biochem Biophys Res Commun 1987; 148: 308–313.

    Article  CAS  Google Scholar 

  15. Trouw LA, Nilsson SC, Goncalves I, Landberg G, Blom AM . C4b-binding protein binds to necrotic cells and DNA, limiting DNA release and inhibiting complement activation. J Exp Med 2005; 201: 1937–1948.

    Article  CAS  Google Scholar 

  16. Palaniyar N, Nadesalingam J, Clark H, Shih MJ, Dodds AW, Reid KB . Nucleic acid is a novel ligand for innate, immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin. J Biol Chem 2004; 279: 32728–32736.

    Article  CAS  Google Scholar 

  17. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8: 487–496.

    Article  CAS  Google Scholar 

  18. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007; 449: 564–569.

    Article  CAS  Google Scholar 

  19. Wittrup A, Sandgren S, Lilja J, Bratt C, Gustavsson N, Morgelin M et al. Identification of proteins released by mammalian cells that mediate DNA internalization through proteoglycan-dependent macropinocytosis. J Biol Chem 2007; 282: 27897–27904.

    Article  CAS  Google Scholar 

  20. Gillmore JD, Hutchinson WL, Herbert J, Bybee A, Mitchell DA, Hasserjian RP et al. Autoimmunity and glomerulonephritis in mice with targeted deletion of the serum amyloid P component gene: SAP deficiency or strain combination? Immunology 2004; 112: 255–264.

    Article  CAS  Google Scholar 

  21. Garlanda C, Bottazzi B, Bastone A, Mantovani A . Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 2005; 23: 337–366.

    Article  CAS  Google Scholar 

  22. Macdonald SL, Kilpatrick DC . Human serum amyloid P component binds to peripheral blood monocytes. Scand J Immunol 2006; 64: 48–52.

    Article  CAS  Google Scholar 

  23. Lu J, Marnell LL, Marjon KD, Mold C, Du Clos TW, Sun PD . Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 2008; 456: 989–992.

    Article  CAS  Google Scholar 

  24. Castano AP, Lin SL, Surowy T, Nowlin BT, Turlapati SA, Patel T et al. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte–macrophage regulation in vivo. Sci Transl Med 2009; 1: 5–13.

    Article  Google Scholar 

  25. Bharadwaj D, Mold C, Markham E, Du Clos TW . Serum amyloid P component binds to Fc gamma receptors and opsonizes particles for phagocytosis. J Immunol 2001; 166: 6735–6741.

    Article  CAS  Google Scholar 

  26. Bijl M, Horst G, Bijzet J, Bootsma H, Limburg PC, Kallenberg CG . Serum amyloid P component binds to late apoptotic cells and mediates their uptake by monocyte-derived macrophages. Arthritis Rheum 2003; 48: 248–254.

    Article  CAS  Google Scholar 

  27. Pepys MB, Herbert J, Hutchinson WL, Tennent GA, Lachmann HJ, Gallimore JR et al. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 2002; 417: 254–259.

    Article  CAS  Google Scholar 

  28. MacKay JA, Li W, Huang Z, Dy EE, Huynh G, Tihan T et al. HIV TAT peptide modifies the distribution of DNA nanolipoparticles following convection-enhanced delivery. Mol Ther 2008; 16: 893–900.

    Article  CAS  Google Scholar 

  29. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B . DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999; 189: 169–178.

    Article  CAS  Google Scholar 

  30. Sandgren S, Wittrup A, Cheng F, Jonsson M, Eklund E, Busch S et al. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J Biol Chem 2004; 279: 17951–17956.

    Article  CAS  Google Scholar 

  31. Greenland JR, Geiben R, Ghosh S, Pastor WA, Letvin NL . Plasmid DNA vaccine-elicited cellular immune responses limit in vivo vaccine antigen expression through Fas-mediated apoptosis. J Immunol 2007; 178: 5652–5658.

    Article  CAS  Google Scholar 

  32. Wells DJ . Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS Lett 1993; 332: 179–182.

    Article  CAS  Google Scholar 

  33. Zhang X, Divangahi M, Ngai P, Santosuosso M, Millar J, Zganiacz A et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine 2007; 25: 1342–1352.

    Article  CAS  Google Scholar 

  34. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    Article  CAS  Google Scholar 

  35. Wang Y, Li DA, Hey Y, Wang F, Guo YJ, Yang F et al. Proteomic analysis of augmented immune responses in mouse by prime-and-boost immunization strategy with DNA vaccine coding HBsAg and rHBsAg protein. Vaccine 2007; 25: 8146–8153.

    Article  CAS  Google Scholar 

  36. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  Google Scholar 

  37. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo Jr LD . DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 1122–1128.

    Article  CAS  Google Scholar 

  38. Nelson SR, Tennent GA, Sethi D, Gower PE, Ballardie FW, Amatayakul-Chantler S et al. Serum amyloid P component in chronic renal failure and dialysis. Clin Chim Acta 1991; 200: 191–199.

    Article  CAS  Google Scholar 

  39. Pepys MB, Baltz M, Gomer K, Davies AJ, Doenhoff M . Serum amyloid P-component is an acute-phase reactant in the mouse. Nature 1979; 278: 259–261.

    Article  CAS  Google Scholar 

  40. Noursadeghi M, Bickerstaff MC, Gallimore JR, Herbert J, Cohen J, Pepys MB . Role of serum amyloid P component in bacterial infection: protection of the host or protection of the pathogen. Proc Natl Acad Sci USA 2000; 97: 14584–14589.

    Article  CAS  Google Scholar 

  41. Tennent GA, Butler PJ, Hutton T, Woolfitt AR, Harvey DJ, Rademacher TW et al. Molecular characterization of Limulus polyphemus C-reactive protein I. Subunit composition. Eur J Biochem 1993; 214: 91–97.

    Article  CAS  Google Scholar 

  42. Bickerstaff MC, Botto M, Hutchinson WL, Herbert J, Tennent GA, Bybee A et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 1999; 5: 694–697.

    Article  CAS  Google Scholar 

  43. Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 2000; 164: 4635–4640.

    Article  CAS  Google Scholar 

  44. Capone S, Zampaglione I, Vitelli A, Pezzanera M, Kierstead L, Burns J et al. Modulation of the immune response induced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhuman primates. J Immunol 2006; 177: 7462–7471.

    Article  CAS  Google Scholar 

  45. Liu J, Kjeken R, Mathiesen I, Barouch DH . Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol 2008; 82: 5643–5649.

    Article  CAS  Google Scholar 

  46. Babiuk S, Baca-Estrada ME, Foldvari M, Middleton DM, Rabussay D, Widera G et al. Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 2004; 110: 1–10.

    Article  CAS  Google Scholar 

  47. Ahlen G, Soderholm J, Tjelle T, Kjeken R, Frelin L, Hoglund U et al. In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J Immunol 2007; 179: 4741–4753.

    Article  CAS  Google Scholar 

  48. Bodin K, Ellmerich S, Kahan MC, Tennent GA, Loesch A, Gilbertson JA et al. Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature 2010; 468: 93–97.

    Article  CAS  Google Scholar 

  49. Pepys MB, Baltz ML, de Beer FC, Dyck RF, Holford S, Breathnach SM et al. Biology of serum amyloid P component. Ann NY Acad Sci 1982; 389: 286–298.

    Article  CAS  Google Scholar 

  50. Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 2008; 451: 725–729.

    Article  CAS  Google Scholar 

  51. Schirmbeck R, Wild J, Reimann J . Similar as well as distinct MHC class I-binding peptides are generated by exogenous and endogenous processing of hepatitis B virus surface antigen. Eur J Immunol 1998; 28: 4149–4161.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Key Program (No. 30530660) from National Natural Science Foundation of China, and Basic Research Program (No. 04JC14004) from the Science and Technology Commission of Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sun.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Guo, Y., Wang, X. et al. Serum amyloid P component facilitates DNA clearance and inhibits plasmid transfection: implications for human DNA vaccine. Gene Ther 19, 70–77 (2012). https://doi.org/10.1038/gt.2011.67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.67

Keywords

Search

Quick links