Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle

A Corrigendum to this article was published on 09 June 2011

This article has been updated

Abstract

Vascular endothelial growth factor A (VEGF-A) induces strong angiogenesis and it has been widely used in proangiogenic gene therapy studies. However, little is known about long-term effects of VEGF-A expression in skeletal muscle. Here the long- term effects of adeno-associated virus (AAV) encoding human VEGF-A165 (AAV-VEGF-A) gene transfer in normal and ischemic rabbit hindlimb skeletal muscles were studied. AAV-LacZ was used as a control. In one-year follow-up, a remarkable increase in skeletal muscle perfusion compared with AAV-LacZ was observed measured with Doppler and contrast pulse sequence ultrasound. Angiogenesis was also seen in histology as enlarged and sprouting capillaries. In addition to favorable angiogenic effects, aberrant vascular structures with CD31 positive cell layers were seen inside muscle fibers after AAV-VEGF-A gene transfer. Importantly, we found increased amounts of extracellular matrix with a high number of macrophages and fibrosis in AAV-VEGF-A transduced muscles. No changes in skeletal muscle morphology were detected in AAV-LacZ transduced muscles. Our results indicate that local AAV-VEGF-A gene transfer efficiently promotes long-term angiogenesis in large animal model. However, non-regulated expression of VEGF-A causes unfavorable changes in muscle morphology, which suggests the need for regulation of the transgene expression in long-term AAV-mediated VEGF-A gene transfer applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

  • 08 December 2011

    This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue

References

  1. Rissanen TT, Yla-Herttuala S . Current status of cardiovascular gene therapy. Mol Ther 2007; 15: 1233–1247.

    Article  CAS  PubMed  Google Scholar 

  2. Karvinen H, Yla-Herttuala S . New aspects in vascular gene therapy. Curr Opin Pharmacol 2010; 10: 208–211.

    Article  CAS  PubMed  Google Scholar 

  3. Rissanen TT, Korpisalo P, Markkanen JE, Liimatainen T, Orden MR, Kholova I et al. Blood flow remodels growing vasculature during vascular endothelial growth factor gene therapy and determines between capillary arterialization and sprouting angiogenesis. Circulation 2005; 112: 3937–3946.

    Article  CAS  PubMed  Google Scholar 

  4. Rajagopalan S, Mohler III ER, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003; 108: 1933–1938.

    Article  CAS  PubMed  Google Scholar 

  5. Makinen K, Manninen H, Hedman M, Matsi P, Mussalo H, Alhava E et al. Increased vascularity detected by digital subtraction Angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther 2002; 6: 127–133.

    Article  CAS  PubMed  Google Scholar 

  6. Nikol S, Baumgartner I, Van BE, Diehm C, Visona A, Capogrossi MC et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 2008; 16: 972–978.

    Article  CAS  PubMed  Google Scholar 

  7. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  8. Daya S, Berns KI . Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21: 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Warrington Jr KH, Herzog RW . Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006; 119: 571–603.

    Article  CAS  PubMed  Google Scholar 

  10. Niemeyer GP, Herzog RW, Mount J, Arruda VR, Tillson DM, Hathcock J et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 2009; 113: 797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stieger K, Schroeder J, Provost N, Mendes-Madeira A, Belbellaa B, Le MG et al. Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol Ther 2009; 17: 516–523.

    Article  CAS  PubMed  Google Scholar 

  12. Riviere C, Danos O, Douar AM . Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Therapy 2006; 13: 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  13. Shimpo M, Ikeda U, Maeda Y, Takahashi M, Miyashita H, Mizukami H et al. AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hindlimb ischemia model. Cardiovasc Res 2002; 53: 993–1001.

    Article  CAS  PubMed  Google Scholar 

  14. Arsic N, Zacchigna S, Zentilin L, Ramirez-Correa G, Pattarini L, Salvi A et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 2004; 10: 844–854.

    Article  CAS  PubMed  Google Scholar 

  15. Rissanen TT, Korpisalo P, Karvinen H, Liimatainen T, Laidinen S, Grohn OH et al. High-resolution ultrasound perfusion imaging of therapeutic angiogenesis. JACC Cardiovasc Imaging 2008; 1: 83–91.

    Article  PubMed  Google Scholar 

  16. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrara N, Henzel WJ . Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851–858.

    Article  CAS  PubMed  Google Scholar 

  18. Deodato B, Arsic N, Zentilin L, Galeano M, Santoro D, Torre V et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Therapy 2002; 9: 777–785.

    Article  CAS  PubMed  Google Scholar 

  19. Zacchigna S, Tasciotti E, Kusmic C, Arsic N, Sorace O, Marini C et al. In vivo imaging shows abnormal function of vascular endothelial growth factor-induced vasculature. Hum Gene Ther 2007; 18: 515–524.

    Article  CAS  PubMed  Google Scholar 

  20. Zacchigna S, Papa G, Antonini A, Novati F, Moimas S, Carrer A et al. Improved survival of ischemic cutaneous and musculocutaneous flaps after vascular endothelial growth factor gene transfer using adeno-associated virus vectors. Am J Pathol 2005; 167: 981–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tafuro S, Ayuso E, Zacchigna S, Zentilin L, Moimas S, Dore F et al. Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res 2009; 83: 663–671.

    Article  CAS  PubMed  Google Scholar 

  22. Korpisalo P, Karvinen H, Rissanen TT, Kilpijoki J, Marjomaki V, Baluk P et al. Vascular endothelial growth factor-A and platelet-derived growth factor-B combination gene therapy prolongs angiogenic effects via recruitment of interstitial mononuclear cells and paracrine effects rather than improved pericyte coverage of angiogenic vessels. Circ Res 2008; 103: 1092–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zentilin L, Tafuro S, Zacchigna S, Arsic N, Pattarini L, Sinigaglia M et al. Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood 2006; 107: 3546–3554.

    Article  CAS  PubMed  Google Scholar 

  24. Zacchigna S, Pattarini L, Zentilin L, Moimas S, Carrer A, Sinigaglia M et al. Bone marrow cells recruited through the neuropilin-1 receptor promote arterial formation at the sites of adult neoangiogenesis in mice. J Clin Invest 2008; 118: 2062–2075.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 2002; 21: 1939–1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arsic N, Zentilin L, Zacchigna S, Santoro D, Stanta G, Salvi A et al. Induction of functional neovascularization by combined VEGF and angiopoietin-1 gene transfer using AAV vectors. Mol Ther 2003; 7: 450–459.

    Article  CAS  PubMed  Google Scholar 

  27. Leppanen P, Kholova I, Mahonen AJ, Airenne K, Koota S, Mansukoski H et al. Short and long-term effects of hVEGF-A(165) in Cre-activated transgenic mice. PLoS One 2006; 1: e13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kansanen E, Jyrkkanen HK, Volger OL, Leinonen H, Kivela AM, Hakkinen SK et al. Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J Biol Chem 2009; 284: 33233–33241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Korpisalo P, Hytonen JP, Laitinen JT, Laidinen S, Parviainen H, Karvinen H et al. Capillary enlargement, not sprouting angiogenesis, determines beneficial therapeutic effects and side effects of angiogenic gene therapy. Eur Heart J 2010 (e-pub ahead of print 7 December 2010; doi:10.1093/eurheartj/ehq433).

  30. Phillips P, Gardner E . Contrast-agent detection and quantification. Eur Radiol 2004; 14 (Suppl 8): P4–P10, 4-10.

    PubMed  Google Scholar 

  31. Stieger SM, Dayton PA, Borden MA, Caskey CF, Griffey SM, Wisner ER et al. Imaging of angiogenesis using Cadence contrast pulse sequencing and targeted contrast agents. Contrast Media Mol Imaging 2008; 3: 9–18.

    Article  CAS  PubMed  Google Scholar 

  32. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 2003; 92: 1098–1106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Finnish Academy, Finnish Foundation for Cardiovascular Research, Finnish Cultural Foundation, North Savo Regional Fund, Sigrid Juselius Foundation, Emil Aaltonen Foundation, Aarne Koskelo Foundation and Maud Kuistila Foundation. We acknowledge the Technicians in the group of Molecular Medicine and at the Experimental Animal Center at University of Eastern Finland for their expert technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ylä-Herttuala.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karvinen, H., Pasanen, E., Rissanen, T. et al. Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle. Gene Ther 18, 1166–1172 (2011). https://doi.org/10.1038/gt.2011.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.66

Keywords

This article is cited by

Search

Quick links