Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Increased oncolytic efficacy for high-grade gliomas by optimal integration of ionizing radiation into the replicative cycle of HSV-1

Abstract

Oncolytic viruses have been combined with standard cancer therapies to increase therapeutic efficacy. Given the sequential activation of herpes viral genes (herpes simplex virus-1, HSV-1) and the temporal cellular changes induced by ionizing radiation, we hypothesized an optimal temporal sequence existed in combining oncolytic HSV-1 with ionizing radiation. Murine U-87 glioma xenografts were injected with luciferase encoding HSV-1, and ionizing radiation (IR) was given at times before or after viral injection. HSV-1 replication and tumor-volume response were followed. Radiation given 6–9 h after HSV-1 injection resulted in maximal viral luciferase expression and infectious viral production in tumor xenografts. The greatest xenograft regression was also seen with radiation given 6 h after viral injection. We then tested if HSV-1 replication had a dose response to ionizing radiation. HSV-1 luciferase expression exhibited a dose response as xenografts were irradiated from 0 to 5 Gy. There was no difference in viral luciferase expression as IR dose increased from 5 Gy up to 20 Gy. These results suggest that the interaction of IR with the HSV-1 lytic cycle can be manipulated for therapeutic gain by delivering IR at a specific time within viral replicative cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10: 459–466.

    Article  CAS  PubMed  Google Scholar 

  2. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG . Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1989; 16: 1405–1409.

    Article  CAS  PubMed  Google Scholar 

  3. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM . Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  4. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  5. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  6. Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 2009; 17: 199–207.

    Article  CAS  PubMed  Google Scholar 

  7. Parker JN, Bauer DF, Cody JJ, Markert JM . Oncolytic viral therapy for malignant glioma. Neurotherapeutics 2009; 6: 558–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roizman B . The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci USA 1996; 93: 11307–11312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiocca EA . Oncolytic viruses. Nat Rev Cancer 2002; 2: 938–950.

    Article  PubMed  Google Scholar 

  10. Chou J, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  11. Advani SJ, Sibley GS, Song PY, Hallahan DE, Kataoka Y, Roizman B et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Therapy 1998; 5: 160–165.

    Article  CAS  PubMed  Google Scholar 

  12. Dilley J, Reddy S, Ko D, Nguyen N, Rojas G, Working P et al. Oncolytic adenovirus CG7870 in combination with radiation demonstrates synergistic enhancements of antitumor efficacy without loss of specificity. Cancer Gene Ther 2005; 12: 715–722.

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Sarkaria JN, Petell CA, Paraskevakou G, Zollman PJ, Schroeder M et al. Combination of measles virus virotherapy and radiation therapy has synergistic activity in the treatment of glioblastoma multiforme. Clin Cancer Res 2007; 12: 7155–7165.

    Article  Google Scholar 

  14. Twigger K, Vidal L, White CL, De Bono JS, Bhide S, Coffey M et al. Enhanced in vitro and in vivo cytotoxicity of combined reovirus and radiotherapy. Clin Cancer Res 2008; 14: 912–923.

    Article  CAS  PubMed  Google Scholar 

  15. Alajez NM, Mocanu JD, Shi W, Chia MC, Breitbach CJ, Hui AB et al. Efficacy of systemically administered mutant vesicular stomatitis virus (VSVDelta51) combined with radiation for nasopharyngeal carcinoma. Clin Cancer Res 2008; 14: 4891–4897.

    Article  CAS  PubMed  Google Scholar 

  16. Qian J, Yang J, Dragovic AF, Abu-Isa E, Lawrence TS, Zhang M . Ionizing radiation-induced adenovirus infection is mediated by dynamin 2. Cancer Res 2005; 65: 5493–5497.

    Article  CAS  PubMed  Google Scholar 

  17. Bradley JD, Kataoka Y, Advani S, Chung SM, Arani RB, Gillespie GY et al. Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin Cancer Res 1999; 5: 1517–1522.

    CAS  PubMed  Google Scholar 

  18. Hadjipanayis CG, DeLuca NA . Inhibition of DNA repair by a herpes simplex virus vector enhances the radiosensitivity of human glioblastoma cells. Cancer Res 2005; 65: 5310–5316.

    Article  CAS  PubMed  Google Scholar 

  19. Stanziale SF, Petrowsky H, Joe JK, Roberts GD, Zager JS, Gusani NJ et al. Ionizing radiation potentiates the antitumor efficacy of oncolytic herpes simplex virus G207 by upregulating ribonucleotide reductase. Surgery 2002; 132: 353–359.

    Article  PubMed  Google Scholar 

  20. Adusumilli PS, Chan MK, Hezel M, Yu Z, Stiles BM, Chou TC et al. Radiation-induced cellular DNA damage repair response enhances viral gene therapy efficacy in the treatment of malignant pleural mesothelioma. Ann Surg Oncol 2007; 14: 258–269.

    Article  PubMed  Google Scholar 

  21. Adusumilli PS, Stiles BM, Chan MK, Chou TC, Wong RJ, Rusch VW et al. Radiation therapy potentiates effective oncolytic viral therapy in the treatment of lung cancer. Ann Thorac Surg 2005; 80: 409–416.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mezhir JJ, Advani SJ, Smith KD, Darga TE, Poon AP, Schmidt H et al. Ionizing radiation activates late herpes simplex virus 1 promoters via the p38 pathway in tumors treated with oncolytic viruses. Cancer Res 2005; 65: 9479–9484.

    Article  CAS  PubMed  Google Scholar 

  23. Advani SJ, Mezhir JJ, Roizman B, Weichselbaum RR . ReVOLT: radiation-enhanced viral oncolytic therapy. Int J Radiat Oncol Biol Phys 2006; 66: 637–646.

    Article  CAS  PubMed  Google Scholar 

  24. He B, Chou J, Liebermann DA, Hoffman B, Roizman B . The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma(1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J Virol 1996; 70: 84–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hollander MC, Zhan Q, Bae I, Fornace Jr AJ . Mammalian GADD34, an apoptosis- and DNA damage-inducible gene. J Biol Chem 1997; 272: 13731–13737.

    Article  CAS  PubMed  Google Scholar 

  26. Hudes RS, Corn BW, Werner-Wasik M, Andrews D, Rosenstock J, Thoron L et al. A phase I dose escalation study of hypofractionated stereotactic radiotherapy as salvage therapy for persistent or recurrent malignant glioma. Int J Radiat Oncol Biol Phys 1999; 43: 293–298.

    Article  CAS  PubMed  Google Scholar 

  27. Torcuator RG, Thind R, Patel M, Mohan YS, Anderson J, Doyle T et al. The role of salvage reirradiation for malignant gliomas that progress on bevacizumab. J Neurooncol 2010; 97: 401–407.

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Zhang Y, Liu MM, Zhou H, Chowdhury W, Lupold SE et al. Evaluation of low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy in prostate cancer. Int J Radiat Biol 2010; 86: 220–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Freytag SO, Movsas B, Aref I, Stricker H, Peabody J, Pegg J et al. Phase I trial of replication-competent adenovirus-mediated suicide gene therapy combined with IMRT for prostate cancer. Mol Ther 2007; 15: 1016–1023.

    Article  CAS  PubMed  Google Scholar 

  30. Harrington KJ, Karapanagiotou EM, Roulstone V, Twigger KR, White CL, Vidal L et al. Two-stage phase I dose-escalation study of intratumoral reovirus type 3 dearing and palliative radiotherapy in patients with advanced cancers. Clin Cancer Res 2010; 16: 3067–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harrington KJ, Hingorani M, Tanay MA, Hickey J, Bhide SA, Clarke PM et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res 2010; 16: 4005–4015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported from grants from the US National Institutes of Health, CA 071933 and CA 097247. We thank Jennifer Coleman for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Advani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Advani, S., Markert, J., Sood, R. et al. Increased oncolytic efficacy for high-grade gliomas by optimal integration of ionizing radiation into the replicative cycle of HSV-1. Gene Ther 18, 1098–1102 (2011). https://doi.org/10.1038/gt.2011.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.61

Keywords

This article is cited by

Search

Quick links