Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress and prospects: hurdles to cardiovascular gene therapy clinical trials

Abstract

Several gene therapy approaches have been designed for the treatment of cardiovascular diseases. A positive finding is that the safety of cardiovascular gene therapy has been excellent even in long-term follow-up. However, several hurdles to this field are still present. A major disappointing feature of the trials is that while preclinical and uncontrolled phase-I gene therapy trials have been positive, none of the randomized controlled phase-II/III cardiovascular gene therapy trials have shown clinically relevant positive effects. Low gene transfer efficiency seems to be associated with several trials. A sophisticated efficient delivery method for cardiovascular applications is still lacking and only low concentrations of the gene product are produced in the target tissues. Only a few gene therapy vectors can be produced in large scale. In addition, inflammatory reactions against vectors and inability to regulate gene expression are still present. Furthermore, a strong placebo effect is affecting the results in gene therapy trials, and long-term trials have become more difficult to conduct because of the multiplicity of therapies applied simultaneously on the patients. This review summarizes advances and obstacles of current cardiovascular clinical gene therapy trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

FGF:

fibroblast growth factor

VEGF:

vascular endothelial growth factor

CAD:

coronary artery disease

CCS:

Canadian Cardiovascular Society

AAV:

adeno-associated virus

References

  1. Ylä-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J . Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 2007; 49: 1015–1026.

    Article  Google Scholar 

  2. Rissanen TT, Ylä-Herttuala S . Current status of cardiovascular gene therapy. Mol Ther 2007; 15: 1233–1247.

    Article  CAS  Google Scholar 

  3. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 2002; 359: 2053–2058.

    Article  CAS  Google Scholar 

  4. Mäkinen K, Manninen H, Hedman M, Matsi P, Mussalo H, Alhava E et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther 2002; 6: 127–133.

    Article  Google Scholar 

  5. Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 2008; 16: 972–978.

    Article  CAS  Google Scholar 

  6. Rajagopalan S, Mohler ER, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003; 108: 1933–1938.

    Article  CAS  Google Scholar 

  7. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 2003; 107: 1359–1365.

    Article  CAS  Google Scholar 

  8. Reilly JP, Grise MA, Fortuin FD, Vale PR, Schaer GL, Lopez J et al. Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in no-option patients. J Interv Cardiol 2005; 18: 27–31.

    Article  Google Scholar 

  9. Laitinen M, Hartikainen J, Hiltunen MO, Eränen J, Kiviniemi M, Närvänen O et al. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 2000; 11: 263–270.

    Article  CAS  Google Scholar 

  10. Hedman M, Hartikainen J, Syvänne M, Stjernvall J, Hedman A, Kivelä A et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio angiogenesis trial (KAT). Circulation 2003; 107: 2677–2683.

    Article  CAS  Google Scholar 

  11. Hedman M, Muona K, Hedman A, Kivelä A, Syvänne M, Eränen J et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Therapy 2009; 16: 629–634.

    Article  CAS  Google Scholar 

  12. Henry TD, Grines CL, Watkins MW, Dib N, Barbeau G, Moreadith R et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 2007; 50: 1038–1046.

    Article  CAS  Google Scholar 

  13. Cardium therapeutics. Summary of generx clinical development. Cardium therapeutics, 2011 (in press), http://www.cardiumthx.com.

  14. Kastrup J, Jorgensen E, Ruck A, Tagil K, Glogar D, Ruzyllo W et al. Euroinject one group. direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject one trial. J Am Coll Cardiol 2005; 45: 982–988.

    Article  CAS  Google Scholar 

  15. Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther 2006; 13: 1503–1511.

    Article  CAS  Google Scholar 

  16. Corautus Genetics. Corautus announces termination of patient enrollment in GENASIS severe angina clinical trial. Corautus Genetics, 2008.

  17. Stewart DJ, Kutryk MJB, Fitchett D, Freeman M, Camack N, Su Y et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 2009; 17: 1109–1115.

    Article  CAS  Google Scholar 

  18. ClinicalTrials.gov. A study to treat patients whose chronic angina symptoms are not relieved by medication and have an area of the heart that cannot be treated by standard therapies. ClinicalTrials.gov, 2011 (in press), http://www.clinicaltrials.gov.

  19. ClinicalTrials.gov. Angiogenesis in women with angina pectoris who are not candidates for revascularization (AWARE). ClinicalTrials.gov, 2011 (in press), http://www.clinicaltrials.gov.

  20. ClinicalTrials.gov. Induced angiogenesis by genic therapy in advanced ischemic cardiomyopathy (THEANGIOGEN). ClinicalTrials.gov, 2011 (in press), http://www.clinicaltrials.gov.

  21. ClinicalTrials.gov. Safety study of gene transfer agent MYDICAR® (AAV1/SERCA2a) to treat heart failure. ClinicalTrials.gov, 2011 (in press), http://www.clinicaltrials.gov.

  22. ClinicalTrials.gov. Efficacy and Safety of XRP0038/NV1FGF in Critical Limb Ischemia Patients With Skin Lesions (TAMARIS). ClinicalTrials.gov, 2011 (in press), http://www.clinicaltrials.gov.

  23. Maier LS, Baumhäkel M, Böhm M . Hotline sessions presented at the American college of cardiology congress 2009. Clin Res Cardiol 2009; 98: 345–352.

    Article  Google Scholar 

  24. Powell RJ, Dormandy J, Simons M, Morishita R, Annex BH . Therapeutic angiogenesis for critical limb ischemia: design of the hepatocyte growth factor therapeutic angiogenesis clinical trial. Vasc Med 2004; 9: 193–198.

    Article  Google Scholar 

  25. Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001; 103: 2138–2143.

    Article  CAS  Google Scholar 

  26. Wirth T, Hedman M, Mäkinen K, Manninen H, Immonen A, Vapalahti M et al. Safety profile of plasmid/liposomes and virus vectors in clinical gene therapy. Curr Drug Safety 2006; 1: 253–257.

    Article  CAS  Google Scholar 

  27. Laitinen M, Pakkanen T, Donetti E, Baetta R, Luoma J, Lehtolainen P et al. Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum Gene Ther 1997; 8: 1645–1650.

    Article  CAS  Google Scholar 

  28. Su H, Huang Y, Takagawa J, Barcena A, Arakawa-Hoyt J, Ye J et al. AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect. Gene Therapy 2006; 13: 1495–1502.

    Article  CAS  Google Scholar 

  29. van Kempen LC, Leenders WP . Tumours can adapt to anti-angiogenic therapy depending on the stromal context: lessons from endothelial cell biology. Eur J Cell Biol 2006; 85: 61–68.

    Article  CAS  Google Scholar 

  30. Crawford Y, Ferrara N . VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 2009; 335: 261–269.

    Article  CAS  Google Scholar 

  31. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 2003; 92: 1098–1106.

    Article  CAS  Google Scholar 

  32. Rissanen TT, Korpisalo P, Markkanen JE, Liimatainen T, Ordén MR, Kholová I et al. Blood flow remodels growing vasculature during vascular endothelial growth factor gene therapy and determines between capillary arterialization and sprouting angiogenesis. Circulation 2005; 112: 3937–3946.

    Article  CAS  Google Scholar 

  33. Korpisalo P, Rissanen TT, Bengtsson T, Liimatainen T, Laidinen S, Karvinen H et al. Therapeutic angiogenesis with placental growth factor improves exercise tolerance of ischaemic rabbit hindlimbs. Cardiovasc Res 2008; 80: 263–270.

    Article  CAS  Google Scholar 

  34. Baumgartner I, Rauh G, Pieczek A, Wuensch D, Magner M, Kearney M et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 2000; 132: 880–884.

    Article  CAS  Google Scholar 

  35. Saaristo A, Tammela T, Timonen J, Ylä-Herttuala S, Tukiainen E, Asko-Seljavaara S . Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J 2004; 18: 1707–1709.

    Article  CAS  Google Scholar 

  36. Matsunaga N, Chikaraishi Y, Izuta H, Ogata N, Shimazawa M, Matsumura M et al. Role of soluble vascular endothelial growth factor receptor-1 in the vitreous in proliferative diabetic retinopathy. Ophthalmology 2008; 115: 1916–1922.

    Article  Google Scholar 

  37. Yamasaki M, Noma H, Funatsu H, Minamoto A, Mimura T, Shimada K et al. Changes in foveal thickness after vitrectomy for macular edema with branch retinal vein occlusion and intravitreal vascular endothelial growth factor. Int Ophthalmol 2009; 29: 161–167.

    Article  Google Scholar 

  38. Lantry LE . Ranibizumab, a mAb against VEGF-A for the potential treatment of age-related macular degeneration and other ocular complications. Curr Opin Mol Ther 2007; 9: 592–602.

    CAS  PubMed  Google Scholar 

  39. Kusumanto YH, Weel VV, Mulder NH, Smit AJ, Dungen JJ, Hooymans JM et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 2006; 17: 683–691.

    Article  CAS  Google Scholar 

  40. Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J et al. Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 2009; 119: 845–856.

    Article  Google Scholar 

  41. Hao X, Mansson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, Brodin LA et al. Myocardial angiogenesis after plasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model. Cardiovasc Res 2007; 73: 481–487.

    Article  CAS  Google Scholar 

  42. Yamashita Y, Shimada M, Tachibana K, Harimoto N, Tsujita E, Shirabe K et al. In vivo gene transfer into muscle via electro-sonoporation. Hum Gene Ther 2002; 13: 2079–2084.

    Article  CAS  Google Scholar 

  43. Fichou Y, Ferec C . The potential of oligonucleotides for therapeutic applications. Trends Biotechnol 2006; 24: 563–570.

    Article  CAS  Google Scholar 

  44. Wen S, Graf S, Massey PG, Dichek DA . Improved vascular gene transfer with a helper-dependent adenoviral vector. Circulation 2004; 110: 1484–1491.

    Article  CAS  Google Scholar 

  45. Matthews QL . Capsid-incorporation of antigens into adenovirus capsid proteins for a vaccine approach. Mol Pharm 2011; 1: 3–11.

    Article  Google Scholar 

  46. Vajanto I, Rissanen TT, Rutanen J, Hiltunen MO, Tuomisto TT, Arve K et al. Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ. J Gene Med 2002; 4: 371–380.

    Article  CAS  Google Scholar 

  47. Nicklin SA, White SJ, Nicol CG, Von Seggern DJ, Baker AH . In vitro and in vivo characterisation of endothelial cell selective adenoviral vectors. J Gene Med 2004; 6: 300–308.

    Article  CAS  Google Scholar 

  48. Gruchala M, Bhardwaj S, Pajusola K, Roy H, Rissanen TT, Kokina I et al. Gene transfer into rabbit arteries with adeno-associated virus and adenovirus vectors. J Gene Med 2004; 6: 545–554.

    Article  CAS  Google Scholar 

  49. Baldazzi F, Jørgensen E, Ripa RS, Kastrup J . Release of biomarkers of myocardial damage after direct intramyocardial injection of genes and stem cells via the percutaneous transluminal route. Eur Heart J 2008; 29: 1819–1826.

    Article  CAS  Google Scholar 

  50. Fukushima S, Varela-Carver A, Coppen SR, Yamahara K, Felkin LE, Lee J et al. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation 2007; 115: 2254–2261.

    Article  Google Scholar 

  51. Hiltunen MO, Turunen MP, Turunen AM, Rissanen TT, Laitinen M, Kosma VM et al. Biodistribution of adenoviral vector to nontarget tissues after local in vivo gene transfer to arterial wall using intravascular and periadventitial gene delivery methods. FASEB J 2000; 14: 2230–2236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Academy of Finland, European Union Clinigene project (LSHB-CT-2006-018933), Finnish Foundation for Cardiovascular Research and EVO-grant (EVO5130) from Kuopio University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ylä-Herttuala.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedman, M., Hartikainen, J. & Ylä-Herttuala, S. Progress and prospects: hurdles to cardiovascular gene therapy clinical trials. Gene Ther 18, 743–749 (2011). https://doi.org/10.1038/gt.2011.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.43

Keywords

This article is cited by

Search

Quick links