Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vivo therapeutic efficacy of intra-renal CD40 silencing in a model of humoral acute rejection

Abstract

The humoral branch of the immune response has an important role in acute and chronic allograft dysfunction. The CD40/CD40L costimulatory pathway is crucial in B- and T- alloresponse. Our group has developed a new small interfering RNA (siRNA) molecule against CD40 that effectively inhibits its expression. The aim of the present study was to prevent rejection in an acute vascular rejection model of kidney transplant by intra-graft gene silencing with anti-CD40 siRNA (siCD40), associated or not with sub-therapeutic rapamycin. Four groups were designed: unspecific siRNA as control; sub-therapeutic rapamycin; siCD40; and combination therapy. Long-surviving rats were found only in both siCD40-treated groups. The CD40 mRNA was overexpressed in control grafts but treatment with siCD40 decreased its expression. Recipient spleen CD40+ B-lymphocytes were reduced in both siCD40-treated groups. Moreover, CD40 silencing reduced donor-specific antibodies, graft complement deposition and immune-inflammatory mediators. The characteristic histological features of humoral rejection were not found in siCD40-treated grafts, which showed a more cellular histological pattern. Therefore, the intra-renal effective blockade of the CD40/CD40L signal reduces the graft inflammation as well as the incidence of humoral vascular acute rejection, finally changing the type of rejection from humoral to cellular.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Turgeon NA, Kirk AD, Iwakoshi NN . Differential effects of donor-specific alloantibody. Transplant Rev (Orlando) 2009; 23: 25–33.

    Article  Google Scholar 

  2. Gilligan BJ, Woo HM, Kosieradzki M, Torrealba JR, Southard JH, Mangino MJ . Prolonged hypothermia causes primary nonfunction in preserved canine renal allografts due to humoral rejection. Am J Transplant 2004; 4: 1266–1273.

    Article  Google Scholar 

  3. Van Kooten C, Banchereau J . CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2–17.

    Article  CAS  Google Scholar 

  4. Shoker AS, Lun ZR, Choudry R, Saxena A . Analysis of the CD40/CD40L role in the sustenance of alloreactive antibody production. Transpl Immunol 2001; 8: 219–228.

    Article  CAS  Google Scholar 

  5. Li XL, Menoret S, Le Mauff B, Angin M, Anegon I . Promises and obstacles for the blockade of CD40-CD40L interactions in allotransplantation. Transplantation 2008; 86: 10–15.

    Article  CAS  Google Scholar 

  6. Rizvi M, Pathak D, Freedman JE, Chakrabarti S . CD40-CD40 ligand interactions in oxidative stress, inflammation and vascular disease. Trends Mol Med 2008; 14: 530–538.

    Article  CAS  Google Scholar 

  7. Vowinkel T, Wood KC, Stokes KY, Russell J, Krieglstein CF, Granger DN . Differential expression and regulation of murine CD40 in regional vascular beds. Am J Physiol Heart Circ Physiol 2006; 290: H631–H639.

    Article  CAS  Google Scholar 

  8. van Kooten C, Woltman AM, Daha MR . Immunological function of tubular epithelial cells: the functional implications of CD40 expression. Exp Nephrol 2000; 8: 203–207.

    Article  CAS  Google Scholar 

  9. Yellin MJ, D’Agati V, Parkinson G, Han AS, Szema A, Baum D et al. Immunohistologic analysis of renal CD40 and CD40L expression in lupus nephritis and other glomerulonephritides. Arthritis Rheum 1997; 40: 124–134.

    Article  CAS  Google Scholar 

  10. Gaweco AS, Mitchell BL, Lucas BA, McClatchey KD, Van Thiel DH . CD40 expression on graft infiltrates and parenchymal CD154 (CD40L) induction in human chronic renal allograft rejection. Kidney Int 1999; 55: 1543–1552.

    Article  CAS  Google Scholar 

  11. Mengel M, Mueller I, Behrend M, von Wasielewski R, Radermacher J, Schwarz A et al. Prognostic value of cytotoxic T-lymphocytes and CD40 in biopsies with early renal allograft rejection. Transpl Int 2004; 17: 293–300.

    Article  Google Scholar 

  12. Pluvinet R, Olivar R, Krupinski J, Herrero-Fresneda I, Luque A, Torras J et al. CD40: an upstream master switch for endothelial cell activation uncovered by RNAi-coupled transcriptional profiling. Blood 2008; 112: 3624–3637.

    Article  CAS  Google Scholar 

  13. Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381: 434–438.

    Article  CAS  Google Scholar 

  14. Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 1997; 94: 8789–8794.

    Article  CAS  Google Scholar 

  15. Kirk AD, Burkly LC, Batty DS, Baumgartner RE, Berning JD, Buchanan K et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999; 5: 686–693.

    Article  CAS  Google Scholar 

  16. Ossevoort MA, Ringers J, Kuhn EM, Boon L, Lorre K, van den Hout Y et al. Prevention of renal allograft rejection in primates by blocking the B7/CD28 pathway. Transplantation 1999; 68: 1010–1018.

    Article  CAS  Google Scholar 

  17. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006; 355: 1018–1028.

    Article  CAS  Google Scholar 

  18. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB . Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 2000; 6: 114.

    Article  CAS  Google Scholar 

  19. Pluvinet R, Petriz J, Torras J, Herrero-Fresneda I, Cruzado JM, Grinyo JM et al. RNAi-mediated silencing of CD40 prevents leukocyte adhesion on CD154-activated endothelial cells. Blood 2004; 104: 3642–3646.

    Article  CAS  Google Scholar 

  20. Herrero-Fresneda I, Franquesa M, Torras J, Vidal A, Aran J, Pluvinet R et al. Role of cold ischemia in acute rejection: characterization of a humoral-like acute rejection in experimental renal transplantation. Transplant Proc 2005; 37: 3712–3715.

    Article  CAS  Google Scholar 

  21. Herrero-Fresneda I, Torras J, Vidal A, Lloberas N, Cruzado JM, Grinyo JM . Reduction of postischemic immune inflammatory response: an effective strategy for attenuating chronic allograft nephropathy. Transplantation 2005; 79: 165–173.

    Article  CAS  Google Scholar 

  22. Sacks SH, Zhou W . Locally produced complement and its role in renal allograft rejection. Am J Transplant 2003; 3: 927–932.

    Article  CAS  Google Scholar 

  23. Pratt JR, Basheer SA, Sacks SH . Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med 2002; 8: 582–587.

    Article  CAS  Google Scholar 

  24. Sacks S, Zhou W . New boundaries for complement in renal disease. J Am Soc Nephrol 2008; 19: 1865–1869.

    Article  Google Scholar 

  25. Linfert D, Chowdhry T, Rabb H . Lymphocytes and ischemia-reperfusion injury. Transplant Rev (Orlando) 2009; 23: 1–10.

    Article  Google Scholar 

  26. Jang HR, Ko GJ, Wasowska BA, Rabb H . The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med 2009; 87: 859–864.

    Article  CAS  Google Scholar 

  27. Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H . B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol 2003; 171: 3210–3215.

    Article  CAS  Google Scholar 

  28. Xu H, Yan J, Huang Y, Chilton PM, Ding C, Schanie CL et al. Costimulatory blockade of CD154-CD40 in combination with T-cell lymphodepletion results in prevention of allogeneic sensitization. Blood 2008; 111: 3266–3275.

    Article  CAS  Google Scholar 

  29. Andreakos E, Foxwell B, Feldmann M . Is targeting Toll-like receptors and their signaling pathway a useful therapeutic approach to modulating cytokine-driven inflammation? Immunol Rev 2004; 202: 250–265.

    Article  CAS  Google Scholar 

  30. Andrade CF, Waddell TK, Keshavjee S, Liu M . Innate immunity and organ transplantation: the potential role of toll-like receptors. Am J Transplant 2005; 5: 969–975.

    Article  CAS  Google Scholar 

  31. Land WG . The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation 2005; 79: 505–514.

    Article  Google Scholar 

  32. Weiler M, Kachko L, Chaimovitz C, Van Kooten C, Douvdevani A . CD40 ligation enhances IL-15 production by tubular epithelial cells. J Am Soc Nephrol 2001; 12: 80–87.

    CAS  PubMed  Google Scholar 

  33. Kirkiles-Smith NC, Mahboubi K, Plescia J, McNiff JM, Karras J, Schechner JS et al. IL-11 protects human microvascular endothelium from alloinjury in vivo by induction of survivin expression. J Immunol 2004; 172: 1391–1396.

    Article  CAS  Google Scholar 

  34. Lai PC, Smith J, Bhangal G, Chaudhry KA, Chaudhry AN, Keith Jr JC et al. Interleukin-11 reduces renal injury and glomerular NF-kappa B activity in murine experimental glomerulonephritis. Nephron Exp Nephrol 2005; 101: e146–e154.

    Article  CAS  Google Scholar 

  35. Curti A, Ratta M, Corinti S, Girolomoni G, Ricci F, Tazzari P et al. Interleukin-11 induces Th2 polarization of human CD4(+) T cells. Blood 2001; 97: 2758–2763.

    Article  CAS  Google Scholar 

  36. Malyszko J, Malyszko JS, Pawlak K, Wolczynski S, Mysliwiec M . Apelin, a novel adipocytokine, in relation to endothelial function and inflammation in kidney allograft recipients. Transplant Proc 2008; 40: 3466–3469.

    Article  CAS  Google Scholar 

  37. Kleinz MJ, Baxter GF . Apelin reduces myocardial reperfusion injury independently of PI3K/Akt and P70S6 kinase. Regul Pept 2008; 146: 271–277.

    Article  CAS  Google Scholar 

  38. Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y . Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 2004; 18: 1909–1911.

    Article  CAS  Google Scholar 

  39. Han S, Wang G, Qi X, Englander EW, Greeley Jr GH . Involvement of a Stat3 binding site in inflammation-induced enteric apelin expression. Am J Physiol Gastrointest Liver Physiol 2008; 295: G1068–G1078.

    Article  CAS  Google Scholar 

  40. Tiani C, Garcia-Pras E, Mejias M, de Gottardi A, Berzigotti A, Bosch J et al. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol 2009; 50: 296–305.

    Article  CAS  Google Scholar 

  41. Kim SH, Zukowski K, Novak RF . Rapamycin effects on mTOR signaling in benign, premalignant and malignant human breast epithelial cells. Anticancer Res 2009; 29: 1143–1150.

    CAS  PubMed  Google Scholar 

  42. Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T et al. The Banff 97 working classification of renal allograft pathology. Kidney Int 1999; 55: 713–723.

    Article  CAS  Google Scholar 

  43. Herrero-Fresneda I, Torras J, Cruzado JM, Condom E, Vidal A, Riera M et al. Do alloreactivity and prolonged cold ischemia cause different elementary lesions in chronic allograft nephropathy? Am J Pathol 2003; 162: 127–137.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Instituto de Salud Carlos III/FIS (PI03/0082, PI03/0516, PI06/0230, PS09/00107) and Fundación SENEFRO 2007. Immaculada Herrero-Fresneda and Josep M. Aran are researchers from ‘Programa Estabilización Investigadores’ financed by ISCIII and Dpt. Salut Generalitat Catalunya. Elia Ripoll is the recipient of a fellowship from IDIBELL. We thank Núria Bolaños and Esther Herrero and Serveis Científico-Tècnics (UB, Bellvitge) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J M Aran or I Herrero-Fresneda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ripoll, E., Pluvinet, R., Torras, J. et al. In vivo therapeutic efficacy of intra-renal CD40 silencing in a model of humoral acute rejection. Gene Ther 18, 945–952 (2011). https://doi.org/10.1038/gt.2011.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.39

Keywords

This article is cited by

Search

Quick links