Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coxsackievirus B3 used as a gene therapy vector to express functional FGF2

Abstract

Current gene therapies are predominantly based on a handful of viral vectors. The limited choice of delivery vectors has been one of the stumbling blocks to the advancement of gene therapy. Therefore, the development of novel recombinant vectors should facilitate the application of gene therapies. In this study, we examined coxsackievirus B3 (CVB3) as a novel recombinant vector for the delivery and expression of a foreign gene in vitro and in vivo. A recombinant CVB3 complementary DNA was constructed by inserting a gene encoding human fibroblast growth factor 2 (FGF2). The recombinant virus (CVB3–FGF2) efficiently expressed FGF2 in HeLa cells and human cardiomyocytes in vitro and in mouse hindlimbs in vivo. The injection of the recombinant virus into mice with ischemic hindlimbs protected the hindlimbs from ischemic necrosis. CVB3–FGF2 injection significantly improved the blood flow in the ischemic limbs for over 3 weeks compared with that in the phosphate-buffered saline- or CVB3-injected controls, suggesting that FGF2 expressed from CVB3–FGF2 is functional and therapeutically effective. The virulence of CVB3 was also drastically attenuated in the recombinant virus. Thus, CVB3 can be modified to express a functional foreign protein, supporting its use as a novel viral vector for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tomar RS, Matta H, Chaudhary PM . Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 2003; 22: 5712–5715.

    Article  CAS  PubMed  Google Scholar 

  2. Lundstrom K . Latest development in viral vectors for gene therapy. Trends Biotechnol 2003; 21: 117–122.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R et al. Gene transfer into humans—immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570–578.

    Article  CAS  PubMed  Google Scholar 

  4. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14: 452–455.

    Article  CAS  PubMed  Google Scholar 

  6. Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE . Gene therapy: targeting the myocardium. Heart 2008; 94: 89–99.

    Article  CAS  PubMed  Google Scholar 

  7. Lehrman S . Virus treatment questioned after gene therapy death. Nature 1999; 401: 517–518.

    Article  CAS  PubMed  Google Scholar 

  8. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  9. Bouard D, Alazard-Dany D, Cosset FL . Viral vectors: from virology to transgene expression. Br J Pharmacol 2009; 157: 153–165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Segura T, Shea LD . Materials for non-viral gene delivery. Annu Rev Mater Res 2001; 31: 25–46.

    Article  CAS  Google Scholar 

  11. Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P . Vectors and delivery systems in gene therapy. Med Sci Monit 2005; 11: RA110–RA121.

    CAS  PubMed  Google Scholar 

  12. Esfandiarei M, McManus BM . Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol Mech Dis 2008; 3: 125–153.

    Article  Google Scholar 

  13. Tu Z, Chapman NM, Hufnagel G, Tracy S, Romero JR, Barry WH et al. The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. J Virol 1995; 69: 4607–4618.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung SK, Kim JY, Kim IB, Park SI, Paek KH, Nam JH . Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 2005; 333: 31–40.

    Article  CAS  PubMed  Google Scholar 

  15. Coyne CB, Bergelson JM . Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 2006; 124: 119–200.

    Article  CAS  PubMed  Google Scholar 

  16. Henke A, Jarasch N, Martin U, Zell R, Wutzler P . Characterization of the protective capability of a recombinant coxsackievirus B3 variant expressing interferon-γ. Viral Immunol 2008; 21: 38–48.

    Article  CAS  PubMed  Google Scholar 

  17. Kim DS, Cho YJ, Kim BG, Lee SH, Nam JH . Systematic analysis of attenuated Coxsackievirus expressing a foreign gene as a viral vaccine vector. Vaccine 2010; 28: 1234–1240.

    Article  CAS  PubMed  Google Scholar 

  18. Henke A, Zell R, Ehrlich G, Stelzner A . Expression of immunoregulatory cytokines by recombinant coxsackievirus B3 variants confers protection against virus-caused myocarditis. J Virol 2001; 75: 8187–8194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jeong SY, Ahn JH, Cho YJ, Kim YJ, Kim DS, Jee YM et al. Production of cross-reactive peptide antibodies against viral capsid proteins of human enterovirus B to apply diagnostic reagent. Microbiol Immunol 2007; 51: 1091–1098.

    Article  CAS  PubMed  Google Scholar 

  20. Chung SY, Cho YJ, Kim YJ, Kim DS, Lee HR, Nam JH . Development of peptide antibody against coxsackievirus B3 VP2. J Bacteriol Virol 2006; 36: 109–117.

    Article  CAS  Google Scholar 

  21. Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ . Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small 2008; 4: 1769–1777.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee JS, Kim JM, Kim KL, Jang HS, Shin IS, Jeon ES et al. Combined administration of naked DNA vectors encoding VEGF and bFGF enhances tissue perfusion and arteriogenesis in ischemic hindlimb. Biochem Biophys Res Commun 2007; 360: 752–758.

    Article  CAS  PubMed  Google Scholar 

  23. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E et al. Angiogenic synergism, vascular stability and improvement of hindlimb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003; 9: 604–613.

    Article  CAS  PubMed  Google Scholar 

  24. Kim H, Cho HJ, Kim SW, Liu B, Choi YJ, Lee J et al. CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ Res 2010; 107: 602–614.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kim SW, Kim H, Cho HJ, Lee JU, Levit R, Yoon YS . Human peripheral blood-derived CD31+ cells have robust angiogenic and vasculogenic properties and are effective for treating ischemic vascular disease. J Am Coll Cardiol 2010; 56: 593–607.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lim BK, Shin JO, Lee SC, Kim DK, Choi DJ, Choe SC et al. Long-term cardiac gene expression using a coxsackieviral vector. J Mol Cell Cardiol 2005; 38: 745–751.

    Article  CAS  PubMed  Google Scholar 

  27. Kim YJ, Yun SH, Lim BK, Park KB, Na HN, Jeong SY et al. Systemic analysis of a novel coxsackievirus gene delivery system in a mouse model. J Microbiol Biotechnol 2009; 19: 307–313.

    CAS  PubMed  Google Scholar 

  28. Park JH, Kim DS, Cho YJ, Kim YJ, Jeong SY, Lee SM et al. Attenuation of coxsackievirus B3 by VP2 mutation and its application as a vaccine against virus-induced myocarditis and pancreatitis. Vaccine 2009; 27: 1974–1983.

    Article  CAS  PubMed  Google Scholar 

  29. Conaldi PG, Serra C, Mossa A, Falcone V, Basolo F, Camussi G et al. Persistent infection of human vascular endothelial cells by group B coxsackieviruses. J Infect Dis 1997; 175: 693–696.

    Article  CAS  PubMed  Google Scholar 

  30. Feuer R, Mena I, Pagarigan R, Slifka MK, Whitton JL . Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 2002; 76: 4430–4440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kim SM, Park JH, Chung SK, Kim JY, Hwang HY, Chung KC et al. Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol 2004; 78: 13479–13488.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Knowlton KU, Jeon ES, Berkley N, Wessely R, Huber S . A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J Virol 1996; 70: 7811–7818.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu P, Aitken K, Kong YY, Opavsky MA, Martino T, Dawood F et al. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med 2000; 6: 429–434.

    Article  CAS  PubMed  Google Scholar 

  34. Forns X, Emerson SU, Tobin GJ, Mushahwar IK, Purcell RH, Bukh J . DNA immunization of mice and macaques with plasmids encoding hepatitis C virus envelope E2 protein expressed intracellularly and on the cell surface. Vaccine 1999; 17: 1992–2002.

    Article  CAS  PubMed  Google Scholar 

  35. Noh YT, Cho JE, Han MG, Lee NY, Kim SY, Chu CS et al. Seroepidemiological characteristics of haemorrhagic fever with renal syndrome from 1996 to 2005 in Korea. J Bacteriol Virol 2006; 36: 263–269.

    Article  Google Scholar 

  36. Huang NF, Niiyama H, Peter C, De A, Natkunam Y, Fleissner F et al. Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arterioscler Thromb Vasc Biol 2010; 20: 984–991.

    Article  Google Scholar 

  37. Kim JY, Cao L, Shvartsman D, Silva EA, Mooney DJ . Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 2011; 11: 694–700.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from GRRC of the Catholic University of Korea, the Next-generation Biogreen 21 Program (PJ007186) of the Rural Development Administration, and MKE and KOTEF through the Human Resource Training Project for Strategic Technology. We thank Jun Yong Park, Chorong Jung and Joon-Ho Lee for their assistance with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-H Nam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, DS., Kim, H., Shim, SH. et al. Coxsackievirus B3 used as a gene therapy vector to express functional FGF2. Gene Ther 19, 1159–1165 (2012). https://doi.org/10.1038/gt.2011.201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.201

Keywords

This article is cited by

Search

Quick links