Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Physiological regulation of transgene expression by a lentiviral vector containing the A2UCOE linked to a myeloid promoter

Abstract

Protection against epigenetic silencing is a desirable feature of future gene therapy vectors, in particular for those applications in which transgene expression will not confer growth advantage to gene-transduced cells. The ubiquitous chromatin opening element (UCOE) consisting of the methylation-free CpG island encompassing the dual divergently transcribed promoters of the human HNRPA2B1-CBX3 housekeeping genes (A2UCOE) has been shown to shield constitutive active heterologous promoters from epigenetic modifications and chromosomal position effects. However, it is unclear if this element can be used to improve expression from tissue-specific enhancer/promoters, while maintaining tissue specificity in hematopoietic cells. Here, we evaluated the potential of the A2UCOE in combination with the myeloid-specific myeloid related protein 8 (MRP8) promoter to target transgene expression specifically to myeloid cells in vitro and in vivo from a self-inactivating lentiviral vector. The inclusion of the A2UCOE did not interfere with specific upregulation of MRP8 promoter activity during myeloid differentiation and mediated sustained and vector copy-dependent expression in myeloid cells. Notably, the A2UCOE did not protect the MRP8 promoter from methylation in the P19 embryonal carcinoma cell line, suggesting that this element maintains the inherent epigenetic state and transcriptional activity of cellular promoters in their native configuration. Thus, the A2UCOE could represent a useful protective genetic element in gene therapy vectors, ensuring physiological transcriptional regulation of tissue-specific promoters independent of the chromosomal integration site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360: 447–458.

    Article  CAS  PubMed  Google Scholar 

  2. Boztug K, Schmidt M, Schwarzer A, Banerjee P, Avedillo Díez I, Dewey R et al. Successful hematopoietic stem cell gene therapy for Wiskott–Aldrich syndrome. N Engl J Med 2010; 363: 1918–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010; 363: 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gaspar HB, Bjorkegren E, Parsley K, Gilmour KC, King D, Sinclair J et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther 2006; 14: 505–513.

    Article  CAS  PubMed  Google Scholar 

  5. Sokolic R, Kesserwan C, Candotti F . Recent advances in gene therapy for severe congenital immunodeficiency diseases. Curr Opin Hematol 2008; 15: 375–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17: 1919–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198–204.

    Article  CAS  PubMed  Google Scholar 

  8. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  9. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  10. Barde I, Laurenti E, Verp S, Wiznerowicz M, Offner S, Viornery A et al. Lineage- and stage-restricted lentiviral vectors for the gene therapy of chronic granulomatous disease. Gene Therapy 2011; e-pub ahead of print 5 May 2011; doi:10.1038/gt.2011.65.

    Article  CAS  PubMed  Google Scholar 

  11. Santilli G, Almarza E, Brendel C, Choi U, Beilin C, Blundell MP et al. Biochemical correction of X-CGD by a novel chimeric promoter regulating high levels of transgene expression in myeloid cells. Mol Ther 2011; 19: 122–132.

    Article  CAS  PubMed  Google Scholar 

  12. Ellis J . Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 2005; 16: 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  13. Emery DW . The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum Gene Ther 2011; 22: 761–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G . A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 2000; 97: 9150–9155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gardiner-Garden M, Frommer M . CpG islands in vertebrate genomes. J Mol Biol 1987; 196: 261–282.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Z, Han L . CpG islands: algorithms and applications in methylation studies. Biochem Biophys Res Commun 2009; 382: 643–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bird A . The dinucleotide CG as a genomic signalling module. J Mol Biol 2011; 409: 47–53.

    Article  CAS  PubMed  Google Scholar 

  18. Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M et al. CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol 2005; 5: 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang F, Frost AR, Blundell MP, Bales O, Antoniou MN, Thrasher AJ . A ubiquitous chromatin opening element (UCOE) confers resistance to DNA methylation-mediated silencing of lentiviral vectors. Mol Ther 2010; 18: 1640–1649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Senigl F, Plachy J, Hejnar J . The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing. J Virol 2008; 82: 7818–7827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 2007; 110: 1448–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E et al. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics 2003; 82: 269–279.

    Article  CAS  PubMed  Google Scholar 

  23. Lindahl Allen M, Antoniou M . Correlation of DNA methylation with histone modifications across the HNRPA2B1-CBX3 ubiquitously-acting chromatin open element (UCOE). Epigenetics 2007; 2: 227–236.

    Article  PubMed  Google Scholar 

  24. Cullere X, Lauterbach M, Tsuboi N, Mayadas TN . Neutrophil-selective CD18 silencing using RNA interference in vivo. Blood 2008; 111: 3591–3598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lagasse E, Clerc RG . Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation. Mol Cell Biol 1988; 8: 2402–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagasse E, Weissman IL . Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage. Blood 1992; 79: 1907–1915.

    CAS  PubMed  Google Scholar 

  27. Lagasse E, Weissman IL . Bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 1994; 179: 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  28. He J, Yang Q, Chang LJ . Dynamic DNA methylation and histone modifications contribute to lentiviral transgene silencing in murine embryonic carcinoma cells. J Virol 2005; 79: 13497–13508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28: 1097–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010; 6: 479–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008; 40: 897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C et al. Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 1998; 273: 34970–34975.

    Article  CAS  PubMed  Google Scholar 

  33. Chang AH, Sadelain M . The genetic engineering of hematopoietic stem cells: the rise of lentiviral vectors, the conundrum of the ltr, and the promise of lineage-restricted vectors. Mol Ther 2007; 15: 445–456.

    Article  CAS  PubMed  Google Scholar 

  34. Kustikova OS, Schiedlmeier B, Brugman MH, Stahlhut M, Bartels S, Li Z et al. Cell-intrinsic and vector-related properties cooperate to determine the incidence and consequences of insertional mutagenesis. Mol Ther 2009; 17: 1537–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16: 718–725.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 2008; 205: 2235–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Endoh Y, Chung YM, Clark IA, Geczy CL, Hsu K . IL-10-dependent S100A8 gene induction in monocytes/macrophages by double-stranded RNA. J Immunol 2009; 182: 2258–2268.

    Article  CAS  PubMed  Google Scholar 

  38. Nemeth J, Stein I, Haag D, Riehl A, Longerich T, Horwitz E et al. S100A8 and S100A9 are novel nuclear factor kappa B target genes during malignant progression of murine and human liver carcinogenesis. Hepatology 2009; 50: 1251–1262.

    Article  CAS  PubMed  Google Scholar 

  39. Yao D, Brownlee M . Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 2010; 59: 249–255.

    Article  CAS  PubMed  Google Scholar 

  40. Gebhardt C, Nemeth J, Angel P, Hess J . S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72: 1622–1631.

    Article  CAS  PubMed  Google Scholar 

  41. Perera C, McNeil HP, Geczy CL . S100 calgranulins in inflammatory arthritis. Immunol Cell Biol 2010; 88: 41–49.

    Article  CAS  PubMed  Google Scholar 

  42. Hessian PA, Edgeworth J, Hogg N . MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol 1993; 53: 197–204.

    Article  CAS  PubMed  Google Scholar 

  43. Zentilin L, Qin G, Tafuro S, Dinauer MC, Baum C, Giacca M . Variegation of retroviral vector gene expression in myeloid cells. Gene Therapy 2000; 7: 153–166.

    Article  CAS  PubMed  Google Scholar 

  44. Talbot GE, Waddington SN, Bales O, Tchen RC, Antoniou MN . Desmin-regulated lentiviral vectors for skeletal muscle gene transfer. Mol Ther 2010; 18: 601–608.

    Article  CAS  PubMed  Google Scholar 

  45. Chambers SM, Boles NC, Lin KY, Tierney MP, Bowman TV, Bradfute SB et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 2007; 1: 578–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palmer AC, Ahlgren-Berg A, Egan JB, Dodd IB, Shearwin KE . Potent transcriptional interference by pausing of RNA polymerases over a downstream promoter. Mol Cell 2009; 34: 545–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gilchrist DA, Dos Santos G, Fargo DC, Xie B, Gao Y, Li L et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 2010; 143: 540–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hargreaves DC, Horng T, Medzhitov R . Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 2009; 138: 129–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ding C, Kume A, Bjorgvinsdottir H, Hawley RG, Pech N, Dinauer MC . High-level reconstitution of respiratory burst activity in a human X-linked chronic granulomatous disease (X-CGD) cell line and correction of murine X-CGD bone marrow cells by retroviral-mediated gene transfer of human gp91phox. Blood 1996; 88: 1834–1840.

    CAS  PubMed  Google Scholar 

  50. Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 1995; 9: 202–209.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang CC, Lodish HF . Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 2005; 105: 4314–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maetzig T, Brugman MH, Bartels S, Heinz N, Kustikova OS, Modlich U et al. Polyclonal fluctuation of lentiviral vector-transduced and expanded murine hematopoietic stem cells. Blood 2011; 117: 3053–3064.

    Article  CAS  PubMed  Google Scholar 

  53. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of immnodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  PubMed  Google Scholar 

  54. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Therapy 2006; 13: 641–645.

    Article  CAS  PubMed  Google Scholar 

  55. Moreno-Carranza B, Gentsch M, Stein S, Schambach A, Santilli G, Rudolf E et al. Transgene optimization significantly improves SIN vector titers, gp91phox expression and reconstitution of superoxide production in X-CGD cells. Gene Therapy 2009; 16: 111–118.

    Article  CAS  PubMed  Google Scholar 

  56. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M et al. GeneCards version 3: the human gene integrator. Database (Oxford) 2010; 2010: baq020.

    Article  Google Scholar 

  57. Stoesser G, Baker W, van den Broek A, Camon E, Garcia-Pastor M, Kanz C et al. The EMBL Nucleotide Sequence Database. Nucleic Acids Res 2002; 30: 21–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tonks A, Pearn L, Musson M, Gilkes A, Mills KI, Burnett AK et al. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 2007; 21: 2495–2505.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Union (FP7 integrated project PERSIST, HEALTH-F5-2009-222878 and integrated project CELL-PID, HEALTH-2010-261387), by the Research Priority Program 1230 from the Deutsche Forschungsgemeinschaft (MG, SPP1230) and the DFG Graduate Program GK1172-Biologicals (CB). The Georg-Speyer-Haus is supported by the Bundesministerium für Gesundheit and the Hessisches Ministerium für Wissenschaft und Kunst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Grez.

Ethics declarations

Competing interests

MNA is an inventor on a patent for biotechnological application of A2UCOE. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brendel, C., Müller-Kuller, U., Schultze-Strasser, S. et al. Physiological regulation of transgene expression by a lentiviral vector containing the A2UCOE linked to a myeloid promoter. Gene Ther 19, 1018–1029 (2012). https://doi.org/10.1038/gt.2011.167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.167

Keywords

This article is cited by

Search

Quick links