Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose

Abstract

Glial cell line-derived neurotrophic factor (GDNF) is one of the candidate molecules among neurotrophic factors proposed for a potential treatment of retinitis pigmentosa (RP). It must be administered repeatedly or through sustained releasing systems to exert prolonged neuroprotective effects. In the dystrophic Royal College of Surgeon's (RCS) rat model of RP, we found that endogenous GDNF levels dropped during retinal degeneration time course, opening a therapeutic window for GDNF supplementation. We showed that after a single electrotransfer of 30 μg of GDNF-encoding plasmid in the rat ciliary muscle, GDNF was produced for at least 7 months. Morphometric, electroretinographic and optokinetic analyses highlighted that this continuous release of GDNF delayed photoreceptors (PRs) as well as retinal functions loss until at least 70 days of age in RCS rats. Unexpectedly, increasing the GDNF secretion level accelerated PR degeneration and the loss of electrophysiological responses. This is the first report: (i) demonstrating the efficacy of GDNF delivery through non-viral gene therapy in RP; (ii) establishing the efficacy of intravitreal administration of GDNF in RP associated with a mutation in the retinal pigment epithelium; and (iii) warning against potential toxic effects of GDNF within the eye/retina.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Cottet S, Schorderet DF . Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 2009; 9: 375–383.

    CAS  PubMed  Google Scholar 

  2. Bainbridge JW, Tan MH, Ali RR . Gene therapy progress and prospects: the eye. Gene Therapy 2006; 13: 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  3. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 2009; 20: 999–1004.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    CAS  PubMed  Google Scholar 

  5. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM . Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 1990; 347: 83–86.

    CAS  PubMed  Google Scholar 

  6. LaVail MM, Yasumura D, Matthes MT, Lau-Villacorta C, Unoki K, Sung CH et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998; 39: 592–602.

    CAS  PubMed  Google Scholar 

  7. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA 2006; 103: 3896–3901.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Frasson M, Picaud S, Leveillard T, Simonutti M, Mohand-Said S, Dreyfus H et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 1999; 40: 2724–2734.

    CAS  PubMed  Google Scholar 

  9. Cayouette M, Smith SB, Becerra SP, Gravel C . Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 1999; 6: 523–532.

    CAS  PubMed  Google Scholar 

  10. Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, Clerin E et al. Identification and characterization of rod-derived cone viability factor. Nat Genet 2004; 36: 755–759.

    CAS  PubMed  Google Scholar 

  11. Buch PK, MacLaren RE, Duran Y, Balaggan KS, MacNeil A, Schlichtenbrede FC et al. In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 2006; 14: 700–709.

    CAS  PubMed  Google Scholar 

  12. Gerwins P, Skoldenberg E, Claesson-Welsh L . Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 2000; 34: 185–194.

    CAS  PubMed  Google Scholar 

  13. Rousseau B, Dubayle D, Sennlaub F, Jeanny JC, Costet P, Bikfalvi A et al. Neural and angiogenic defects in eyes of transgenic mice expressing a dominant-negative FGF receptor in the pigmented cells. Exp Eye Res 2000; 71: 395–404.

    CAS  PubMed  Google Scholar 

  14. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F . GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 1130–1132.

    CAS  PubMed  Google Scholar 

  15. Lin LF, Zhang TJ, Collins F, Armes LG . Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J Neurochem 1994; 63: 758–768.

    CAS  PubMed  Google Scholar 

  16. Airaksinen MS, Saarma M . The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3: 383–394.

    CAS  PubMed  Google Scholar 

  17. Jomary C, Thomas M, Grist J, Milbrandt J, Neal MJ, Jones SE . Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. Invest Ophthalmol Vis Sci 1999; 40: 568–574.

    CAS  PubMed  Google Scholar 

  18. Nosrat CA, Tomac A, Lindqvist E, Lindskog S, Humpel C, Stromberg I et al. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res 1996; 286: 191–207.

    CAS  PubMed  Google Scholar 

  19. Lindqvist N, Peinado-Ramonn P, Vidal-Sanz M, Hallbook F . GDNF, Ret, GFRalpha1 and 2 in the adult rat retino-tectal system after optic nerve transection. Exp Neurol 2004; 187: 487–499.

    CAS  PubMed  Google Scholar 

  20. Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S et al. Microglia-Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 2002; 22: 9228–9236.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jomary C, Darrow RM, Wong P, Organisciak DT, Jones SE . Expression of neurturin, glial cell line-derived neurotrophic factor, and their receptor components in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2004; 45: 1240–1246.

    PubMed  Google Scholar 

  22. Jing S, Wen D, Yu Y, Holst PL, Luo Y, Fang M et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996; 85: 1113–1124.

    CAS  PubMed  Google Scholar 

  23. Ogilvie JM, Speck JD, Lett JM . Growth factors in combination, but not individually, rescue rd mouse photoreceptors in organ culture. Exp Neurol 2000; 161: 676–685.

    CAS  PubMed  Google Scholar 

  24. Politi LE, Rotstein NP, Carri NG . Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Invest Ophthalmol Vis Sci 2001; 42: 3008–3015.

    CAS  PubMed  Google Scholar 

  25. Carwile ME, Culbert RB, Sturdivant RL, Kraft TW . Rod outer segment maintenance is enhanced in the presence of bFGF, CNTF and GDNF. Exp Eye Res 1998; 66: 791–805.

    CAS  PubMed  Google Scholar 

  26. Klocker N, Braunling F, Isenmann S, Bahr M . In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 1997; 8: 3439–3442.

    CAS  PubMed  Google Scholar 

  27. Andrieu-Soler C, Aubert-Pouessel A, Doat M, Picaud S, Halhal M, Simonutti M et al. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse. Mol Vis 2005; 11: 1002–1011.

    CAS  PubMed  Google Scholar 

  28. Gregory-Evans K, Chang F, Hodges MD, Gregory-Evans CY . Ex vivo gene therapy using intravitreal injection of GDNF-secreting mouse embryonic stem cells in a rat model of retinal degeneration. Mol Vis 2009; 15: 962–973.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000; 9: 645–651.

    PubMed  Google Scholar 

  30. Nandrot E, Dufour EM, Provost AC, Pequignot MO, Bonnel S, Gogat K et al. Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol Dis 2000; 7: 586–599.

    CAS  PubMed  Google Scholar 

  31. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 2000; 26: 270–271.

    CAS  PubMed  Google Scholar 

  32. Dowling JE, Sidman RL . Inherited retinal dystrophy in the rat. J Cell Biol 1962; 14: 73–109.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Herron WL, Riegel BW, Myers OE, Rubin ML . Retinal dystrophy in the rat—a pigment epithelial disease. Invest Ophthalmol 1969; 8: 595–604.

    CAS  PubMed  Google Scholar 

  34. Tso MO, Zhang C, Abler AS, Chang CJ, Wong F, Chang GQ et al. Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci 1994; 35: 2693–2699.

    CAS  PubMed  Google Scholar 

  35. Bush RA, Hawks KW, Sieving PA . Preservation of inner retinal responses in the aged Royal College of Surgeons rat. Evidence against glutamate excitotoxicity in photoreceptor degeneration. Invest Ophthalmol Vis Sci 1995; 36: 2054–2062.

    CAS  PubMed  Google Scholar 

  36. LaVail MM, Sidman M, Rausin R, Sidman RL . Discrimination of light intensity by rats with inherited retinal degeneration: a behavioral and cytological study. Vision Res 1974; 14: 693–702.

    CAS  PubMed  Google Scholar 

  37. Ejstrup R, Kiilgaard JF, Tucker BA, Klassen HJ, Young MJ, La Cour M . Pharmacokinetics of intravitreal glial cell line-derived neurotrophic factor: experimental studies in pigs. Exp Eye Res 2010; 91: 890–895.

    CAS  PubMed  Google Scholar 

  38. Gamm DM, Wang S, Lu B, Girman S, Holmes T, Bischoff N et al. Protection of visual functions by human neural progenitors in a rat model of retinal disease. PLoS One 2007; 2: e338.

    PubMed Central  PubMed  Google Scholar 

  39. Lawrence JM, Keegan DJ, Muir EM, Coffey PJ, Rogers JH, Wilby MJ et al. Transplantation of Schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 2004; 45: 267–274.

    PubMed  Google Scholar 

  40. McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG . Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 2001; 4: 622–629.

    CAS  PubMed  Google Scholar 

  41. Bloquel C, Bejjani R, Bigey P, Bedioui F, Doat M, BenEzra D et al. Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF-alpha soluble receptor in uveitis. FASEB J 2006; 20: 389–391.

    CAS  PubMed  Google Scholar 

  42. Touchard E, Kowalczuk L, Bloquel C, Naud MC, Bigey P, Behar-Cohen F . The ciliary smooth muscle electrotransfer: basic principles and potential for sustained intraocular production of therapeutic proteins. J Gene Med 2010; 12: 904–919.

    CAS  PubMed  Google Scholar 

  43. Kowalczuk L, Touchard E, Camelo S, Naud MC, Castaneda B, Brunel N et al. Local ocular immunomodulation resulting from electrotransfer of plasmid encoding soluble TNF receptors in the ciliary muscle. Invest Ophthalmol Vis Sci 2009; 50: 1761–1768.

    PubMed  Google Scholar 

  44. Touchard E, Bloquel C, Bigey P, Kowalczuc L, Jonet L, Thillaye-Goldenberg B et al. Effects of ciliary muscle plasmid electrotransfer of TNF-alpha soluble receptor variants in experimental uveitis. Gene Therapy 2009; 16: 862–873.

    CAS  PubMed  Google Scholar 

  45. Delyfer MN, Simonutti M, Neveux N, Leveillard T, Sahel JA . Does GDNF exert its neuroprotective effects on photoreceptors in the rd1 retina through the glial glutamate transporter GLAST? Mol Vis 2005; 11: 677–687.

    CAS  PubMed  Google Scholar 

  46. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM . Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci 1992; 12: 3554–3567.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Silverman MS, Hughes SE . Photoreceptor rescue in the RCS rat without pigment epithelium transplantation. Curr Eye Res 1990; 9: 183–191.

    CAS  PubMed  Google Scholar 

  48. Qi H, Chuang EY, Yoon KC, de Paiva CS, Shine HD, Jones DB et al. Patterned expression of neurotrophic factors and receptors in human limbal and corneal regions. Mol Vis 2007; 13: 1934–1941.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Qi H, Zheng X, Yuan X, Pflugfelder SC, Li DQ . Potential localization of putative stem/progenitor cells in human bulbar conjunctival epithelium. J Cell Physiol 2010; 225: 180–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Morimoto T, Fujikado T, Choi JS, Kanda H, Miyoshi T, Fukuda Y et al. Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest Ophthalmol Vis Sci 2007; 48: 4725–4732.

    PubMed  Google Scholar 

  51. Pardue MT, Phillips MJ, Yin H, Fernandes A, Cheng Y, Chow AY et al. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2005; 2: S39–S47.

    PubMed  Google Scholar 

  52. Pardue MT, Phillips MJ, Yin H, Sippy BD, Webb-Wood S, Chow AY et al. Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci 2005; 46: 674–682.

    PubMed  Google Scholar 

  53. DeMarco Jr PJ, Yarbrough GL, Yee CW, McLean GY, Sagdullaev BT, Ball SL et al. Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest Ophthalmol Vis Sci 2007; 48: 916–926.

    PubMed  Google Scholar 

  54. Read SP, Cashman SM, Kumar-Singh R . POD nanoparticles expressing GDNF provide structural and functional rescue of light-induced retinal degeneration in an adult mouse. Mol Ther 2010; 18: 1917–1926.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD et al. Characterization of a multicomponent receptor for GDNF. Nature 1996; 382: 80–83.

    CAS  PubMed  Google Scholar 

  56. Takahashi M, Cooper GM . ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 1987; 7: 1378–1385.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Sanicola M, Hession C, Worley D, Carmillo P, Ehrenfels C, Walus L et al. Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc Natl Acad Sci USA 1997; 94: 6238–6243.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Trupp M, Scott R, Whittemore SR, Ibanez CF . Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem 1999; 274: 20885–20894.

    CAS  PubMed  Google Scholar 

  59. Harada C, Harada T, Quah HM, Maekawa F, Yoshida K, Ohno S et al. Potential role of glial cell line-derived neurotrophic factor receptors in Muller glial cells during light-induced retinal degeneration. Neuroscience 2003; 122: 229–235.

    CAS  PubMed  Google Scholar 

  60. Koeberle PD, Ball AK . Neurturin enhances the survival of axotomized retinal ganglion cells in vivo: combined effects with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Neuroscience 2002; 110: 555–567.

    CAS  PubMed  Google Scholar 

  61. Hauck SM, Kinkl N, Deeg CA, Swiatek-de Lange M, Schoffmann S, Ueffing M . GDNF family ligands trigger indirect neuroprotective signaling in retinal glial cells. Mol Cell Biol 2006; 26: 2746–2757.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Delyfer MN, Forster V, Neveux N, Picaud S, Leveillard T, Sahel JA . Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 2005; 11: 688–696.

    CAS  PubMed  Google Scholar 

  63. Koeberle PD, Bahr M . The upregulation of GLAST-1 is an indirect antiapoptotic mechanism of GDNF and neurturin in the adult CNS. Cell Death Differ 2008; 15: 471–483.

    CAS  PubMed  Google Scholar 

  64. Shoji F, Yamasoba T, Magal E, Dolan DF, Altschuler RA, Miller JM . Glial cell line-derived neurotrophic factor has a dose dependent influence on noise-induced hearing loss in the guinea pig cochlea. Hear Res 2000; 142: 41–55.

    CAS  PubMed  Google Scholar 

  65. Hovland Jr DN, Boyd RB, Butt MT, Engelhardt JA, Moxness MS, Ma MH et al. Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) in rhesus monkeys. Toxicol Pathol 2007; 35: 1013–1029.

    CAS  PubMed  Google Scholar 

  66. Hutchinson M . On the toxicity of GDNF. Toxicol Pathol 2008; 36: 522.

    PubMed  Google Scholar 

  67. Wu WC, Lai CC, Chen SL, Sun MH, Xiao X, Chen TL et al. Long-term safety of GDNF gene delivery in the retina. Curr Eye Res 2005; 30: 715–722.

    CAS  PubMed  Google Scholar 

  68. Yan Q, Wang J, Matheson CR, Urich JL . Glial cell line-derived neurotrophic factor (GDNF) promotes the survival of axotomized retinal ganglion cells in adult rats: comparison to and combination with brain-derived neurotrophic factor (BDNF). J Neurobiol 1999; 38: 382–390.

    CAS  PubMed  Google Scholar 

  69. Sajadi A, Bauer M, Thony B, Aebischer P . Long-term glial cell line-derived neurotrophic factor overexpression in the intact nigrostriatal system in rats leads to a decrease of dopamine and increase of tetrahydrobiopterin production. J Neurochem 2005; 93: 1482–1486.

    CAS  PubMed  Google Scholar 

  70. Brandies R, Yehuda S . The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev 2008; 32: 611–656.

    CAS  PubMed  Google Scholar 

  71. Khoury M, Bigey P, Louis-Plence P, Noel D, Rhinn H, Scherman D et al. A comparative study on intra-articular versus systemic gene electrotransfer in experimental arthritis. J Gene Med 2006; 8: 1027–1036.

    CAS  PubMed  Google Scholar 

  72. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM . ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 1996; 62: 155–169.

    CAS  PubMed  Google Scholar 

  73. Kingston RE, Chen CA, Rose JK . Calcium phosphate transfection. Curr Protoc Mol Biol 2003; Chap 9: Unit 9 1.

    Google Scholar 

  74. Schenborn ET, Goiffon V . Calcium phosphate transfection of mammalian cultured cells. Methods Mol Biol 2000; 130: 135–145.

    CAS  PubMed  Google Scholar 

  75. Prusky GT, Alam NM, Beekman S, Douglas RM . Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 2004; 45: 4611–4616.

    PubMed  Google Scholar 

  76. Koeberle PD, Ball AK . Effects of GDNF on retinal ganglion cell survival following axotomy. Vision Res 1998; 38: 1505–1515.

    CAS  PubMed  Google Scholar 

  77. Kilic U, Kilic E, Dietz GP, Bahr M . The TAT protein transduction domain enhances the neuroprotective effect of glial-cell-line-derived neurotrophic factor after optic nerve transection. Neurodegener Dis 2004; 1: 44–49.

    CAS  PubMed  Google Scholar 

  78. Ward MS, Khoobehi A, Lavik EB, Langer R, Young MJ . Neuroprotection of retinal ganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres. J Pharm Sci 2007; 96: 558–568.

    CAS  PubMed  Google Scholar 

  79. Jiang C, Moore MJ, Zhang X, Klassen H, Langer R, Young M . Intravitreal injections of GDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis 2007; 13: 1783–1792.

    CAS  PubMed  Google Scholar 

  80. Kyhn MV, Klassen H, Johansson UE, Warfvinge K, Lavik E, Kiilgaard JF et al. Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia. Exp Eye Res 2009; 89: 1012–1020.

    CAS  PubMed  Google Scholar 

  81. Schmeer C, Straten G, Kugler S, Gravel C, Bahr M, Isenmann S . Dose-dependent rescue of axotomized rat retinal ganglion cells by adenovirus-mediated expression of glial cell-line derived neurotrophic factor in vivo. Eur J Neurosci 2002; 15: 637–643.

    PubMed  Google Scholar 

  82. Straten G, Schmeer C, Kretz A, Gerhardt E, Kugler S, Schulz JB et al. Potential synergistic protection of retinal ganglion cells from axotomy-induced apoptosis by adenoviral administration of glial cell line-derived neurotrophic factor and X-chromosome-linked inhibitor of apoptosis. Neurobiol Dis 2002; 11: 123–133.

    CAS  PubMed  Google Scholar 

  83. Wu WC, Lai CC, Chen SL, Sun MH, Xiao X, Chen TL et al. GDNF gene therapy attenuates retinal ischemic injuries in rats. Mol Vis 2004; 10: 93–102.

    CAS  PubMed  Google Scholar 

  84. Wu WC, Lai CC, Chen SL, Xiao X, Chen TL, Tsai RJ et al. Gene therapy for detached retina by adeno-associated virus vector expressing glial cell line-derived neurotrophic factor. Invest Ophthalmol Vis Sci 2002; 43: 3480–3488.

    PubMed  Google Scholar 

  85. Allocca M, Di Vicino U, Petrillo M, Carlomagno F, Domenici L, Auricchio A . Constitutive and AP20187-induced Ret activation in photoreceptors does not protect from light-induced damage. Invest Ophthalmol Vis Sci 2007; 48: 5199–5206.

    PubMed  Google Scholar 

  86. Ishikawa H, Takano M, Matsumoto N, Sawada H, Ide C, Mimura O et al. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode. Gene Therapy 2005; 12: 289–298.

    CAS  PubMed  Google Scholar 

  87. Dong A, Shen J, Krause M, Hackett SF, Campochiaro PA . Increased expression of glial cell line-derived neurotrophic factor protects against oxidative damage-induced retinal degeneration. J Neurochem 2007; 103: 1041–1052.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the ANR EMERGENCE project ANR-05-EMPB-001-02 and the European project EVI-GENORET LSHG-CT-2005-512036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Behar-Cohen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touchard, E., Heiduschka, P., Berdugo, M. et al. Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose. Gene Ther 19, 886–898 (2012). https://doi.org/10.1038/gt.2011.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.154

Keywords

This article is cited by

Search

Quick links