Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-150-regulated vectors allow lymphocyte-sparing transgene expression in hematopoietic gene therapy

Abstract

Endogenous microRNA (miRNA) expression can be exploited for cell type-specific transgene expression as the addition of miRNA target sequences to transgenic cDNA allows for transgene downregulation specifically in cells expressing the respective miRNAs. Here, we have investigated the potential of miRNA-150 target sequences to specifically suppress gene expression in lymphocytes and thereby prevent transgene-induced lymphotoxicity. Abundance of miRNA-150 expression specifically in differentiated B and T cells was confirmed by quantitative reverse transcriptase PCR. Mono- and bicistronic lentiviral vectors were used to investigate the effect of miRNA-150 target sequences on transgene expression in the lymphohematopoietic system. After in vitro studies demonstrated effective downregulation of transgene expression in murine B220+ B and CD3+ T cells, the concept was further verified in a murine transplant model. Again, marked suppression of transgene activity was observed in B220+ B and CD4+ or CD8+ T cells whereas expression in CD11b+ myeloid cells, lin and lin/Sca1+ progenitors, or lin/Sca1+/c-kit+ stem cells remained almost unaffected. No toxicity of miRNA-150 targeting in transduced lymphohematopoietic cells was noted. Thus, our results demonstrate the suitability of miRNA-150 targeting to specifically suppress transgene expression in lymphocytes and further support the concept of miRNA targeting for cell type-specific transgene expression in gene therapy approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  2. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010; 363: 1918–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hacein-Bey-Abina S, Fischer A, Cavazzana-Calvo M . Gene therapy of X-linked severe combined immunodeficiency. Int J Hematol 2002; 76: 295–298.

    Article  CAS  PubMed  Google Scholar 

  4. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  5. Negre O, Fusil F, Colomb C, Roth S, Gillet-Legrand B, Henri A et al. Correction of murine {beta}-thalassemia after minimal lentiviral gene transfer and homeostatic in vivo erythroid expansion. Blood 2011; 117: 5321–5331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perumbeti A, Higashimoto T, Urbinati F, Franco R, Meiselman HJ, Witte D et al. A novel human gamma-globin gene vector for genetic correction of sickle cell anemia in a humanized sickle mouse model: critical determinants for successful correction. Blood 2009; 114: 1174–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakai N . Pathogenesis of leukodystrophy for Krabbe disease: molecular mechanism and clinical treatment. Brain Dev 2009; 31: 485–487.

    Article  PubMed  Google Scholar 

  8. Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12: 189–211.

    Article  CAS  PubMed  Google Scholar 

  9. Heckl D, Wicke DC, Brugman MH, Meyer J, Schambach A, Busche G et al. Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia. Blood 2011; 117: 3737–3747.

    Article  CAS  PubMed  Google Scholar 

  10. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  11. Brown BD, Naldini L . Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009; 10: 578–585.

    Article  CAS  PubMed  Google Scholar 

  12. Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T et al. Absolute quantification of microRNAs by using a universal reference. RNA 2009; 15: 2375–2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petriv OI, Kuchenbauer F, Delaney AD, Lecault V, White A, Kent D et al. Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci USA 2010; 107: 15443–15448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L . Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 2006; 12: 585–591.

    Article  CAS  PubMed  Google Scholar 

  15. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 2007; 110: 4144–4152.

    Article  CAS  PubMed  Google Scholar 

  16. Gentner B, Visigalli I, Hiramatsu H, Lechman E, Ungari S, Giustacchini A et al. Identification of hematopoietic stem cell-specific miRNAs enables gene therapy of globoid cell leukodystrophy. Sci Transl Med 2010; 2: 58ra84.

    Article  CAS  PubMed  Google Scholar 

  17. Rattmann I, Kleff V, Sorg UR, Bardenheuer W, Brueckner A, Hilger RA et al. Gene transfer of cytidine deaminase protects myelopoiesis from cytidine analogs in an in vivo murine transplant model. Blood 2006; 108: 2965–2971.

    Article  CAS  PubMed  Google Scholar 

  18. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005; 6: R71.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Spierings DC, McGoldrick D, Hamilton-Easton AM, Neale G, Murchison EP, Hannon GJ et al. Ordered progression of stage specific miRNA profiles in the mouse B2 B cell lineage. Blood 2011; 117: 5340–5349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    Article  CAS  PubMed  Google Scholar 

  21. Neilson JR, Zheng GX, Burge CB, Sharp PA . Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 2007; 21: 578–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salmon P, Kindler V, Ducrey O, Chapuis B, Zubler RH, Trono D . High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 2000; 96: 3392–3398.

    CAS  PubMed  Google Scholar 

  23. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  PubMed  Google Scholar 

  24. Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy Jr JP, Sloand EM et al. Hematopoietic-specific microRNA expression in human cells. Leuk Res 2006; 30: 643–647.

    Article  CAS  PubMed  Google Scholar 

  25. Geisler A, Jungmann A, Kurreck J, Poller W, Katus HA, Vetter R et al. microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors. Gene Therapy 2011; 18: 199–209.

    Article  CAS  PubMed  Google Scholar 

  26. Kelly ME, Zhuo J, Bharadwaj AS, Chao H . Induction of immune tolerance to FIX following muscular AAV gene transfer is AAV-dose/FIX-level dependent. Mol Ther 2009; 17: 857–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiao C, Yuan Z, Li J, He B, Zheng H, Mayer C et al. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Therapy 2011; 18: 403–410.

    Article  CAS  PubMed  Google Scholar 

  28. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129: 147–161.

    Article  CAS  PubMed  Google Scholar 

  29. Papapetrou EP, Kovalovsky D, Beloeil L, Sant’angelo D, Sadelain M . Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras. J Clin Invest 2009; 119: 157–168.

    CAS  PubMed  Google Scholar 

  30. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF . miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 2007; 104: 7080–7085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Watanabe A, Tagawa H, Yamashita J, Teshima K, Nara M, Iwamoto K et al. The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia 2011; 25: 1324–1334.

    Article  CAS  PubMed  Google Scholar 

  32. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14: 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011; 117: 5189–5197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17: 1919–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maetzig T, Galla M, Brugman MH, Loew R, Baum C, Schambach A . Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors. Gene Therapy 2010; 17: 400–411.

    Article  CAS  PubMed  Google Scholar 

  36. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK . Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993; 90: 8033–8037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy 2000; 7: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  38. Schambach A, Galla M, Modlich U, Will E, Chandra S, Reeves L et al. Lentiviral vectors pseudotyped with murine ecotropic envelope: increased biosafety and convenience in preclinical research. Exp Hematol 2006; 34: 588–592.

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan CS, Ganem D . A virus-encoded inhibitor that blocks RNA interference in mammalian cells. J Virol 2005; 79: 7371–7379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang CC, Lodish HF . Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 2005; 105: 4314–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Matthias Ballmaier and his team from the Core-Facility Cell-Sorting of Hannover Medical School for cell sorting and Doreen Lüttge (Hannover) for excellent technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft: Cluster of Excellence REBIRTH (Exc 62/1), SPP1230 Grant MO 886/3-1 (UM and TM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Moritz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachmann, N., Jagielska, J., Heckl, D. et al. MicroRNA-150-regulated vectors allow lymphocyte-sparing transgene expression in hematopoietic gene therapy. Gene Ther 19, 915–924 (2012). https://doi.org/10.1038/gt.2011.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.148

Keywords

This article is cited by

Search

Quick links