Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

Delivery of functional DNA and messenger RNA to mammalian phagocytic cells by recombinant yeast

Abstract

Among the different vaccination approaches, DNA/RNA vaccination represents a promising means in particular for the induction of effective cellular immune responses conferred by CD8-positive T lymphocytes. To achieve such immune responses, there is a need for novel delivery systems that allow the introduction of nucleic acids to the cytosol of immune cells. We show, for the first time, the delivery of functional DNA and messenger RNA (mRNA) to mammalian antigen-presenting cells, including murine macrophages and human dendritic cells, using the yeast Saccharomyces cerevisiae as the delivery vehicle. After transfer of the particular nucleic acid, subsequent antigen processing and presentation were demonstrated in a human system. Remarkably, release of DNA/mRNA does not require additional ‘helper’ proteins such as listeriolysin. In conclusion, the yeast-based system described here is superior to many bacterial and viral systems in terms of efficacy, safety and targeting suggesting ‘mycofection’ as a promising approach for the development of a novel type of live vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rice J, Ottensmeier CH, Stevenson FK . DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8: 108–120.

    Article  CAS  Google Scholar 

  2. Pilgrim S, Stritzker J, Schoen C, Kolb-Maurer A, Geginat G, Loessner MJ et al. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Therapy 2003; 10: 2036–2045.

    Article  CAS  Google Scholar 

  3. Pascolo S . Vaccination with messenger RNA (mRNA). Handb Exp Pharmacol 2008: 221–235.

  4. Weiss S, Krusch S . Bacteria-mediated transfer of eukaryotic expression plasmids into mammalian host cells. Biol Chem 2001; 382: 533–541.

    Article  CAS  Google Scholar 

  5. Schoen C, Kolb-Maurer A, Geginat G, Loffler D, Bergmann B, Stritzker J et al. Bacterial delivery of functional messenger RNA to mammalian cells. Cell Microbiol 2005; 7: 709–724.

    Article  CAS  Google Scholar 

  6. Loeffler DI, Schoen CU, Goebel W, Pilgrim S . Comparison of different live vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA by virulence-attenuated Listeria monocytogenes. Infect Immun 2006; 74: 3946–3957.

    Article  CAS  Google Scholar 

  7. Darji A, zur Lage S, Garbe AI, Chakraborty T, Weiss S . Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol 2000; 27: 341–349.

    Article  CAS  Google Scholar 

  8. Lewis GK . Live-attenuated Salmonella as a prototype vaccine vector for passenger immunogens in humans: are we there yet? Expert Rev Vaccines 2007; 6: 431–440.

    Article  CAS  Google Scholar 

  9. Howland SW, Wittrup KD . Antigen release kinetics in the phagosome are critical to cross-presentation efficiency. J Immunol 2008; 180: 1576–1583.

    Article  CAS  Google Scholar 

  10. Wadle A, Held G, Neumann F, Kleber S, Wuellner B, Asemissen AM et al. Cross-presentation of HLA class I epitopes from influenza matrix protein produced in Saccharomyces cerevisiae. Vaccine 2006; 24: 6272–6281.

    Article  CAS  Google Scholar 

  11. Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med 2001; 7: 625–629.

    Article  CAS  Google Scholar 

  12. Stubbs AC, Wilson CC . Recombinant yeast as a vaccine vector for the induction of cytotoxic T-lymphocyte responses. Curr Opin Mol Ther 2002; 4: 35–40.

    CAS  PubMed  Google Scholar 

  13. Haller AA, Lauer GM, King TH, Kemmler C, Fiolkoski V, Lu Y et al. Whole recombinant yeast-based immunotherapy induces potent T cell responses targeting HCV NS3 and core proteins. Vaccine 2007; 25: 1452–1463.

    Article  CAS  Google Scholar 

  14. Lu Y, Bellgrau D, Dwyer-Nield LD, Malkinson AM, Duke RC, Rodell TC et al. Mutation-selective tumor remission with Ras-targeted, whole yeast-based immunotherapy. Cancer Res 2004; 64: 5084–5088.

    Article  CAS  Google Scholar 

  15. Bernstein MB, Chakraborty M, Wansley EK, Guo Z, Franzusoff A, Mostbock S et al. Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine 2008; 26: 509–521.

    Article  CAS  Google Scholar 

  16. Wansley EK, Chakraborty M, Hance KW, Bernstein MB, Boehm AL, Guo Z et al. Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clin Cancer Res 2008; 14: 4316–4325.

    Article  CAS  Google Scholar 

  17. Remondo C, Cereda V, Mostbock S, Sabzevari H, Franzusoff A, Schlom J et al. Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine 2009; 27: 987–994.

    Article  CAS  Google Scholar 

  18. Ardiani A, Higgins JP, Hodge JW . Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res 2010; 10: 1060–1069.

    Article  CAS  Google Scholar 

  19. Tanaka A, Jensen JD, Prado R, Riemann H, Shellman YG, Norris DA et al. Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma. Gene Therapy 2011; 18: 827–834.

    Article  CAS  Google Scholar 

  20. Heintel T, Breinig F, Schmitt MJ, Meyerhans A . Extensive MHC class I-restricted CD8 T lymphocyte responses against various yeast genera in humans. FEMS Immunol Med Microbiol 2003; 39: 279–286.

    Article  CAS  Google Scholar 

  21. Beier R, Gebert A . Kinetics of particle uptake in the domes of Peyer's patches. Am J Physiol 1998; 275: G130–G137.

    Article  CAS  Google Scholar 

  22. Lorenz MC, Bender JA, Fink GR . Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 2004; 3: 1076–1087.

    Article  CAS  Google Scholar 

  23. Lorenz MC, Fink GR . The glyoxylate cycle is required for fungal virulence. Nature 2001; 412: 83–86.

    Article  CAS  Google Scholar 

  24. Evstafieva AG, Beletsky AV, Borovjagin AV, Bogdanov AA . Internal ribosome entry site of encephalomyocarditis virus RNA is unable to direct translation in Saccharomyces cerevisiae. FEBS Lett 1993; 335: 273–276.

    Article  CAS  Google Scholar 

  25. Jackson RJ, Standart N . Do the poly(A) tail and 3′ untranslated region control mRNA translation? Cell 1990; 62: 15–24.

    Article  CAS  Google Scholar 

  26. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006; 108: 4009–4017.

    Article  CAS  Google Scholar 

  27. Dietrich G, Bubert A, Gentschev I, Sokolovic Z, Simm A, Catic A et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat Biotechnol 1998; 16: 181–185.

    Article  CAS  Google Scholar 

  28. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  29. Lauterbach H, Gruber A, Ried C, Cheminay C, Brocker T . Insufficient APC capacities of dendritic cells in gene gun-mediated DNA vaccination. J Immunol 2006; 176: 4600–4607.

    Article  CAS  Google Scholar 

  30. Van Tendeloo VF, Ponsaerts P, Berneman ZN . mRNA-based gene transfer as a tool for gene and cell therapy. Curr Opin Mol Ther 2007; 9: 423–431.

    CAS  PubMed  Google Scholar 

  31. Abdulhaqq SA, Weiner DB . DNA vaccines: developing new strategies to enhance immune responses. Immunol Res 2008; 42: 219–232.

    Article  CAS  Google Scholar 

  32. Breinig F, Heintel T, Schumacher A, Meyerhans A, Schmitt MJ . Specific activation of CMV-primed human T lymphocytes by cytomegalovirus pp65 expressed in fission yeast. FEMS Immunol Med Microbiol 2003; 38: 231–239.

    Article  CAS  Google Scholar 

  33. Walch B, Breinig T, Geginat G, Schmitt MJ, Breinig F . Yeast-based protein delivery to mammalian phagocytic cells is increased by coexpression of bacterial listeriolysin. Microbes Infect 2011; e-pub ahead of print 27 May 2011; doi:10.1016/j.micinf.2011.05.006.

  34. Kern F, Bunde T, Faulhaber N, Kiecker F, Khatamzas E, Rudawski IM et al. Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J Infect Dis 2002; 185: 1709–1716.

    Article  CAS  Google Scholar 

  35. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 1996; 70: 7569–7579.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 2002; 169: 1984–1992.

    Article  CAS  Google Scholar 

  37. Forman SJ, Zaia JA, Clark BR, Wright CL, Mill BJ, Pottahil R et al. A 64 000 dalton matrix protein of human cytomegalovirus induces in vitro immune responses similar to those of whole viral antigen. J Immunol 1985; 134: 3391–3395.

    CAS  PubMed  Google Scholar 

  38. Guzman CA, Domann E, Rohde M, Bruder D, Darji A, Weiss S et al. Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of Listeria monocytogenes. Mol Microbiol 1996; 20: 119–126.

    Article  CAS  Google Scholar 

  39. Carrero JA, Calderon B, Unanue ER . Listeriolysin O from Listeria monocytogenes is a lymphocyte apoptogenic molecule. J Immunol 2004; 172: 4866–4874.

    Article  CAS  Google Scholar 

  40. Carrero JA, Vivanco-Cid H, Unanue ER . Granzymes drive a rapid listeriolysin O-induced T cell apoptosis. J Immunol 2008; 181: 1365–1374.

    Article  CAS  Google Scholar 

  41. Ackerman AL, Giodini A, Cresswell P . A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 2006; 25: 607–617.

    Article  CAS  Google Scholar 

  42. Ackerman AL, Kyritsis C, Tampe R, Cresswell P . Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat Immunol 2005; 6: 107–113.

    Article  CAS  Google Scholar 

  43. Franzusoff A, Duke RC, King TH, Lu Y, Rodell TC . Yeasts encoding tumour antigens in cancer immunotherapy. Expert Opin Biol Ther 2005; 5: 565–575.

    Article  CAS  Google Scholar 

  44. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR . Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 1989; 77: 61–68.

    Article  CAS  Google Scholar 

  45. Breinig F, Schmitt MJ . Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2002; 58: 637–644.

    Article  CAS  Google Scholar 

  46. Breinig F, Schleinkofer K, Schmitt MJ . Yeast Kre1p is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology 2004; 150: 3209–3218.

    Article  CAS  Google Scholar 

  47. Heiligenstein S, Eisfeld K, Sendzik T, Jimenez-Becker N, Breinig F, Schmitt MJ . Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD. EMBO J 2006; 25: 4717–4727.

    Article  CAS  Google Scholar 

  48. Ito H, Fukuda Y, Murata K, Kimura A . Transformation of intact yeast cells treated with alkali cations. J Bacteriol 1983; 153: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schutz A, Scheller N, Breinig T, Meyerhans A . The Autographa californica nuclear polyhedrosis virus AcNPV induces functional maturation of human monocyte-derived dendritic cells. Vaccine 2006; 24: 7190–7196.

    Article  Google Scholar 

  50. Scheller N, Furtwangler R, Sester U, Maier R, Breinig T, Meyerhans A . Human cytomegalovirus protein pp65: an efficient protein carrier system into human dendritic cells. Gene Therapy 2008; 15: 318–325.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Birgit Glombitza and Roswitha Schepp for excellent technical assistance. We are grateful to the Winterbergkliniken Saarbrücken for providing blood cell concentrates, Andreas Meyerhans for a pp65-containing plasmid, and Gernot Geginat for the IC21 cell line and helpful discussions. This work was supported by a start-up grant from Saarland University and a grant from the ARGUS Foundation, Berlin, Germany, to FB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Breinig.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walch, B., Breinig, T., Schmitt, M. et al. Delivery of functional DNA and messenger RNA to mammalian phagocytic cells by recombinant yeast. Gene Ther 19, 237–245 (2012). https://doi.org/10.1038/gt.2011.121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.121

Keywords

This article is cited by

Search

Quick links