Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV vectors transduce hepatocytes in vivo as efficiently in cirrhotic as in healthy rat livers

Abstract

In liver cirrhosis, abnormal liver architecture impairs efficient transduction of hepatocytes with large viral vectors such as adenoviruses. Here we evaluated the ability of adeno-associated virus (AAV) vectors, small viral vectors, to transduce normal and cirrhotic rat livers. Using AAV serotype-1 (AAV1) encoding luciferase (AAV1Luc) we analyzed luciferase expression with a CCD camera. AAV1Luc was injected through the hepatic artery (intra-arterial (IA)), the portal vein (intra-portal (IP)), directly into the liver (intra-hepatic (IH)) or infused into the biliary tree (intra-biliar). We found that AAV1Luc allows long-term and constant luciferase expression in rat livers. Interestingly, IP administration leads to higher expression levels in healthy than in cirrhotic livers, whereas the opposite occurs when using IA injection. IH administration leads to similar transgene expression in cirrhotic and healthy rats, whereas intra-biliar infusion is the least effective route. After 70% partial hepatectomy, luciferase expression decreased in the regenerating liver, suggesting lack of efficient integration of AAV1 DNA into the host genome. AAV1Luc transduced mainly the liver but also the testes and spleen. Within the liver, transgene expression was found mainly in hepatocytes. Using a liver-specific promoter, transgene expression was detected in hepatocytes but not in other organs. Our results indicate that AAVs are convenient vectors for the treatment of liver cirrhosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Friedman SL . Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004; 1: 98–105.

    Article  Google Scholar 

  2. Galvez-Gastelum FJ, Segura-Flores AA, Senties-Gomez MD, Munoz-Valle JF, Armendariz-Borunda JS . Combinatorial gene therapy renders increased survival in cirrhotic rats. J Biomed Sci 2010; 17: 42.

    Article  Google Scholar 

  3. Yue HY, Yin C, Hou JL, Zeng X, Chen YX, Zhong W et al. Hepatocyte nuclear factor 4alpha attenuates hepatic fibrosis in rats. Gut 2010; 59: 236–246.

    Article  CAS  Google Scholar 

  4. Lavina B, Gracia-Sancho J, Rodriguez-Vilarrupla A, Chu Y, Heistad DD, Bosch J et al. Superoxide dismutase gene transfer reduces portal pressure in CCl4 cirrhotic rats with portal hypertension. Gut 2009; 58: 118–125.

    Article  CAS  Google Scholar 

  5. Huang KW, Huang YC, Tai KF, Chen BH, Lee PH, Hwang LH . Dual therapeutic effects of interferon-alpha gene therapy in a rat hepatocellular carcinoma model with liver cirrhosis. Mol Ther 2008; 16: 1681–1687.

    Article  CAS  Google Scholar 

  6. Camino AM, Atorrasagasti C, Maccio D, Prada F, Salvatierra E, Rizzo M et al. Adenovirus-mediated inhibition of SPARC attenuates liver fibrosis in rats. J Gene Med 2008; 10: 993–1004.

    Article  CAS  Google Scholar 

  7. Kinoshita K, Iimuro Y, Otogawa K, Saika S, Inagaki Y, Nakajima Y et al. Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut 2007; 56: 706–714.

    Article  CAS  Google Scholar 

  8. Chen M, Wang GJ, Diao Y, Xu RA, Xie HT, Li XY et al. Adeno-associated virus mediated interferon-gamma inhibits the progression of hepatic fibrosis in vitro and in vivo. World J Gastroenterol 2005; 11: 4045–4051.

    Article  CAS  Google Scholar 

  9. Vera M, Sobrevals L, Zaratiegui M, Martinez L, Palencia B, Rodriguez CM et al. Liver transduction with a simian virus 40 vector encoding insulin-like growth factor I reduces hepatic damage and the development of liver cirrhosis. Gene Therapy 2007; 14: 203–210.

    Article  CAS  Google Scholar 

  10. Sobrevals L, Rodriguez C, Romero-Trevejo JL, Gondi G, Monreal I, Paneda A et al. Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology 2010; 51: 912–921.

    CAS  PubMed  Google Scholar 

  11. Garcia-Banuelos J, Siller-Lopez F, Miranda A, Aguilar LK, Aguilar-Cordova E, Armendariz-Borunda J . Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Therapy 2002; 9: 127–134.

    Article  CAS  Google Scholar 

  12. Smith JS, Tian J, Muller J, Byrnes AP . Unexpected pulmonary uptake of adenovirus vectors in animals with chronic liver disease. Gene Therapy 2004; 11: 431–438.

    Article  CAS  Google Scholar 

  13. Jacobs F, Wisse E, De Geest B . The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am J Pathol 2010; 176: 14–21.

    Article  CAS  Google Scholar 

  14. Mueller C, Flotte TR . Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Therapy 2008; 15: 858–863.

    Article  CAS  Google Scholar 

  15. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  Google Scholar 

  16. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    Article  CAS  Google Scholar 

  17. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Therapy 2003; 10: 2112–2118.

    Article  CAS  Google Scholar 

  18. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2003; 10: 2105–2111.

    Article  CAS  Google Scholar 

  19. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653–2661.

    Article  CAS  Google Scholar 

  20. Paneda A, Vanrell L, Mauleon I, Crettaz JS, Berraondo P, Timmermans EJ et al. Effect of adeno-associated virus serotype and genomic structure on liver transduction and biodistribution in mice of both genders. Hum Gene Ther 2009; 20: 908–917.

    Article  CAS  Google Scholar 

  21. Flotte TR, Afione SA, Conrad C, McGrath SA, Solow R, Oka H et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA 1993; 90: 10613–10617.

    Article  CAS  Google Scholar 

  22. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994; 8: 148–154.

    Article  CAS  Google Scholar 

  23. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA . AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 2003; 34: 297–302.

    Article  CAS  Google Scholar 

  24. Seppen J, Bakker C, de Jong B, Kunne C, van den Oever K, Vandenberghe K et al. Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats. Mol Ther 2006; 13: 1085–1092.

    Article  CAS  Google Scholar 

  25. Liu F, Liu ZD, Wu N, Cong X, Fei R, Chen HS et al. Transplanted endothelial progenitor cells ameliorate carbon tetrachloride-induced liver cirrhosis in rats. Liver Transpl 2009; 15: 1092–1100.

    Article  Google Scholar 

  26. Deyle DR, Russell DW . Adeno-associated virus vector integration. Curr Opin Mol Ther 2009; 11: 442–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kramer MG, Barajas M, Razquin N, Berraondo P, Rodrigo M, Wu C et al. In vitro and in vivo comparative study of chimeric liver-specific promoters. Mol Ther 2003; 7: 375–385.

    Article  CAS  Google Scholar 

  28. Unzu C, Sampedro A, Mauleon I, Alegre M, Beattie SG, de Salamanca RE et al. Sustained enzymatic correction by rAAV-mediated liver gene therapy protects against induced motor neuropathy in acute porphyria mice. Mol Ther 2011; 19: 243–250.

    Article  CAS  Google Scholar 

  29. Zimmermann T, Muller A, Machnik G, Franke H, Schubert H, Dargel R . Biochemical and morphological studies on production and regression of experimental liver cirrhosis induced by thioacetamide in Uje:WIST rats. Z Versuchstierkd 1987; 30: 165–180.

    CAS  PubMed  Google Scholar 

  30. Nakamura T, Akiyoshi H, Saito I, Sato K . Adenovirus-mediated gene expression in the septal cells of cirrhotic rat livers. J Hepatol 1999; 30: 101–106.

    Article  CAS  Google Scholar 

  31. Suzuki K, Aoki K, Ohnami S, Yoshida K, Kazui T, Kato N et al. Adenovirus-mediated gene transfer of interferon alpha improves dimethylnitrosamine-induced liver cirrhosis in rat model. Gene Therapy 2003; 10: 765–773.

    Article  CAS  Google Scholar 

  32. Pandharipande PV, Krinsky GA, Rusinek H, Lee VS . Perfusion imaging of the liver: current challenges and future goals. Radiology 2005; 234: 661–673.

    Article  Google Scholar 

  33. Wang SR, Renaud G, Infante J, Catala D, Infante R . Isolation of rat hepatocytes with EDTA and their metabolic functions in primary culture. In Vitro Cell Dev Biol 1985; 21: 526–530.

    Article  CAS  Google Scholar 

  34. Friedman SL, Roll FJ . Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem 1987; 161: 207–218.

    Article  CAS  Google Scholar 

  35. Aparicio O, Razquin N, Zaratiegui M, Narvaiza I, Fortes P . Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J Virol 2006; 80: 1376–1384.

    Article  CAS  Google Scholar 

  36. Aparicio O, Carnero E, Abad X, Razquin N, Guruceaga E, Segura V et al. Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair. Nucleic Acids Res 2010; 38: 750–763.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gabor Gondi, Erkuden Casales, Sara Arcelus, Nerea Juanarena and Cristina Olagüe for technical assistance, and Pilar Peréz and Uxue Latasa (CIMA) for help with liver cell isolation. We also thank Gloria González-Aseguinolaza for advice with AAV vectors, AMT for production of ssAAV1EalbAATLuc and Paul Miller for English editorial work. This work was supported by MICINN (BIO2006-13225 and 2009/09295), Fundación Echevano, Instituto de Salud Carlos III, through the ‘UTE project CIMA,’ and by the project RNAREG (CSD2009-00080), funded by the Ministry of Science and Innovation under the programme CONSOLIDER INGENIO 2010. LS was an FPI fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Fortes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobrevals, L., Enguita, M., Rodriguez, C. et al. AAV vectors transduce hepatocytes in vivo as efficiently in cirrhotic as in healthy rat livers. Gene Ther 19, 411–417 (2012). https://doi.org/10.1038/gt.2011.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.119

Keywords

This article is cited by

Search

Quick links