Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease

Abstract

Brain-derived neurotrophic factor (BDNF) is the main candidate for neuroprotective therapeutic strategies for Huntington's disease. However, the administration system and the control over the dosage are still important problems to be solved. Here we generated transgenic mice overexpressing BDNF under the promoter of the glial fibrillary acidic protein (GFAP) (pGFAP-BDNF mice). These mice are viable and have a normal phenotype. However, intrastriatal administration of quinolinate increased the number of reactive astrocytes and enhanced the release of BDNF in pGFAP-BDNF mice compared with wild-type mice. Coincidentally, pGFAP-BDNF mice are more resistant to quinolinate than wild-type mice, suggesting a protective effect of astrocyte-derived BDNF. To verify this, we next cultured astrocytes from pGFAP-BDNF and wild-type mice for grafting. Wild-type and pGFAP-BDNF-derived astrocytes behave similarly in nonlesioned mice. However, pGFAP-BDNF-derived astrocytes showed higher levels of BDNF and larger neuroprotective effects than the wild-type ones when quinolinate was injected 30 days after grafting. Interestingly, mice grafted with pGFAP-BDNF astrocytes showed important and sustained behavioral improvements over time after quinolinate administration as compared with mice grafted with wild-type astrocytes. These findings show that astrocytes engineered to release BDNF can constitute a therapeutic approach for Huntington's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72: 971–983.

    Google Scholar 

  2. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB . Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 1988; 85: 5733–5737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson Jr EP . Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985; 44: 559–577.

    Article  CAS  PubMed  Google Scholar 

  4. Baquet ZC, Gorski JA, Jones KR . Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 2004; 24: 4250–4258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martin-Ibanez R, Munoz MT et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J Neurosci 2004; 24: 7727–7739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gavalda N, Perez-Navarro E, Gratacos E, Comella JX, Alberch J . Differential involvement of phosphatidylinositol 3-kinase and p42/p44 mitogen activated protein kinase pathways in brain-derived neurotrophic factor-induced trophic effects on cultured striatal neurons. Mol Cell Neurosci 2004; 25: 460–468.

    Article  CAS  PubMed  Google Scholar 

  7. Strand AD, Baquet ZC, Aragaki AK, Holmans P, Yang L, Cleren C et al. Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 2007; 27: 11758–11768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997; 389: 856–860.

    CAS  PubMed  Google Scholar 

  9. Canals JM, Checa N, Marco S, Akerud P, Michels A, Perez-Navarro E et al. Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J Neurosci 2001; 21: 117–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. del Toro D, Canals JM, Gines S, Kojima M, Egea G, Alberch J . Mutant huntingtin impairs the post-Golgi trafficking of brain-derived neurotrophic factor but not its Val66Met polymorphism. J Neurosci 2006; 26: 12748–12757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004; 118: 127–138.

    Article  CAS  PubMed  Google Scholar 

  12. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 2001; 293: 493–498.

    Article  CAS  PubMed  Google Scholar 

  13. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 2003; 35: 76–83.

    Article  CAS  PubMed  Google Scholar 

  14. De March Z, Zuccato C, Giampa C, Patassini S, Bari M, Gasperi V et al. Cortical expression of brain derived neurotrophic factor and type-1 cannabinoid receptor after striatal excitotoxic lesions. Neuroscience 2008; 152: 734–740.

    Article  CAS  PubMed  Google Scholar 

  15. Gharami K, Xie Y, An JJ, Tonegawa S, Xu B . Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice. J Neurochem 2008; 105: 369–379.

    Article  CAS  PubMed  Google Scholar 

  16. Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ . Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience 2006; 141: 569–584.

    Article  CAS  PubMed  Google Scholar 

  17. Spires TL, Grote HE, Varshney NK, Cordery PM, Van DA, Blakemore C et al. Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism. J Neurosci 2004; 24: 2270–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giralt A, Rodrigo T, Martin ED, Gonzalez JR, Mila M, Cena V et al. Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCgamma activity and glutamate receptor expression. Neuroscience 2009; 158: 1234–1250.

    Article  CAS  PubMed  Google Scholar 

  19. Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM et al. Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease. J Neurosci 2007; 27: 4424–4434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alberch J, Perez-Navarro E, Canals JM . Neurotrophic factors in Huntington's disease. Prog Brain Res 2004; 146: 195–229.

    CAS  PubMed  Google Scholar 

  21. Zuccato C, Cattaneo E . Role of brain-derived neurotrophic factor in Huntington's disease. Prog Neurobiol 2007; 81: 294–330.

    Article  CAS  PubMed  Google Scholar 

  22. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ . Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington's disease. Prog Neurobiol 2010; 90: 230–245.

    Article  CAS  PubMed  Google Scholar 

  23. Lindvall O, Wahlberg LU . Encapsulated cell biodelivery of GDNF: a novel clinical strategy for neuroprotection and neuroregeneration in Parkinson's disease? Exp Neurol 2008; 209: 82–88.

    Article  CAS  PubMed  Google Scholar 

  24. Carpenter MK, Winkler C, Fricker R, Emerich DF, Wong SC, Greco C et al. Generation and transplantation of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice. Exp Neurol 1997; 148: 187–204.

    Article  CAS  PubMed  Google Scholar 

  25. Lindvall O, Kokaia Z, Martinez-Serrano A . Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat Med 2004; 10 (Suppl): S42–S50.

    Article  PubMed  Google Scholar 

  26. Bemelmans AP, Horellou P, Pradier L, Brunet I, Colin P, Mallet J . Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer. Hum Gene Ther 1999; 10: 2987–2997.

    Article  CAS  PubMed  Google Scholar 

  27. Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B . AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 2004; 9: 682–688.

    Article  CAS  PubMed  Google Scholar 

  28. Dunnett SB, Rosser AE . Cell therapy in Huntington's disease. NeuroRx 2004; 1: 394–405.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dunnett SB, Rosser AE . Cell transplantation for Huntington's disease. Should we continue? Brain Res Bull 2007; 72: 132–147.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshimoto Y, Lin Q, Collier TJ, Frim DM, Breakefield XO, Bohn MC . Astrocytes retrovirally transduced with BDNF elicit behavioral improvement in a rat model of Parkinson's disease. Brain Res 1995; 691: 25–36.

    Article  CAS  PubMed  Google Scholar 

  31. Kusakabe M, Mangiarini L, Laywell ED, Bates GP, Yoshiki A, Hiraiwa N et al. Loss of cortical and thalamic neuronal tenascin-C expression in a transgenic mouse expressing exon 1 of the human Huntington disease gene. J Comp Neurol 2001; 430: 485–500.

    Article  CAS  PubMed  Google Scholar 

  32. Stack EC, Kubilus JK, Smith K, Cormier K, Del Signore SJ, Guelin E et al. Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington's disease transgenic mice. J Comp Neurol 2005; 490: 354–370.

    Article  PubMed  Google Scholar 

  33. Yu ZX, Li SH, Evans J, Pillarisetti A, Li H, Li XJ . Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease. J Neurosci 2003; 23: 2193–2202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saha RN, Liu X, Pahan K . Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. J Neuroimmune Pharmacol 2006; 1: 212–222.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pineda JR, Rubio N, Akerud P, Urban N, Badimon L, Arenas E et al. Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells. Gene Therapy 2007; 14: 118–128.

    Article  CAS  PubMed  Google Scholar 

  36. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y . ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 1997; 407: 313–319.

    Article  CAS  PubMed  Google Scholar 

  37. Dobrossy MD, Dunnett SB . The corridor task: striatal lesion effects and graft-mediated recovery in a model of Huntington's disease. Behav Brain Res 2007; 179: 326–330.

    Article  PubMed  Google Scholar 

  38. Adam OR, Jankovic J . Symptomatic treatment of Huntington disease. Neurotherapeutics 2008; 5: 181–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonelli RM, Hofmann P . A review of the treatment options for Huntington's disease. Expert Opin Pharmacother 2004; 5: 767–776.

    Article  CAS  PubMed  Google Scholar 

  40. Stack EC, Ferrante RJ . Huntington's disease: progress and potential in the field. Expert Opin Investig Drugs 2007; 16: 1933–1953.

    Article  CAS  PubMed  Google Scholar 

  41. Gratacos E, Perez-Navarro E, Tolosa E, Arenas E, Alberch J . Neuroprotection of striatal neurons against kainate excitotoxicity by neurotrophins and GDNF family members. J Neurochem 2001; 78: 1287–1296.

    Article  CAS  PubMed  Google Scholar 

  42. Kells AP, Henry RA, Connor B . AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Therapy 2008; 15: 966–977.

    Article  CAS  PubMed  Google Scholar 

  43. Perez-Navarro E, Canudas AM, Akerund P, Alberch J, Arenas E . Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington's disease. J Neurochem 2000; 75: 2190–2199.

    Article  CAS  PubMed  Google Scholar 

  44. Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc Natl Acad Sci USA 2009; 106: 4906–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cepeda C, Starling AJ, Wu N, Nguyen OK, Uzgil B, Soda T et al. Increased GABAergic function in mouse models of Huntington's disease: reversal by BDNF. J Neurosci Res 2004; 78: 855–867.

    Article  CAS  PubMed  Google Scholar 

  46. Torres-Peraza JF, Giralt A, Garcia-Martinez JM, Pedrosa E, Canals JM, Alberch J . Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 2008; 29: 409–421.

    Article  CAS  PubMed  Google Scholar 

  47. Hoffman D, Breakefield XO, Short MP, Aebischer P . Transplantation of a polymer-encapsulated cell line genetically engineered to release NGF. Exp Neurol 1993; 122: 100–106.

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-Serrano A, Bjorklund A . Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. J Neurosci 1996; 16: 4604–4616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rubio F, Kokaia Z, Arco A, Garcia-Simon M, Snyder E, Lindvall O et al. BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Therapy 1999; 6: 1851–1866.

    Article  CAS  PubMed  Google Scholar 

  50. Cunningham LA, Su C . Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson's disease. Exp Neurol 2002; 174: 230–242.

    Article  CAS  PubMed  Google Scholar 

  51. Ericson C, Georgievska B, Lundberg C . Ex vivo gene delivery of GDNF using primary astrocytes transduced with a lentiviral vector provides neuroprotection in a rat model of Parkinson's disease. Eur J Neurosci 2005; 22: 2755–2764.

    Article  PubMed  Google Scholar 

  52. Bosch M, Pineda JR, Sunol C, Petriz J, Cattaneo E, Alberch J et al. Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Exp Neurol 2004; 190: 42–58.

    Article  CAS  PubMed  Google Scholar 

  53. Reiner A, Del MN, Deng YP, Meade CA, Sun Z, Goldowitz D . R6/2 neurons with intranuclear inclusions survive for prolonged periods in the brains of chimeric mice. J Comp Neurol 2007; 505: 603–629.

    Article  CAS  PubMed  Google Scholar 

  54. Wu H, Friedman WJ, Dreyfus CF . Differential regulation of neurotrophin expression in basal forebrain astrocytes by neuronal signals. J Neurosci Res 2004; 76: 76–85.

    Article  CAS  PubMed  Google Scholar 

  55. Henry RA, Hughes SM, Connor B . AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci 2007; 25: 3513–3525.

    Article  PubMed  Google Scholar 

  56. Cho SR, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman SA . Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest 2007; 117: 2889–2902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P et al. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 1989; 341: 149–152.

    Article  CAS  PubMed  Google Scholar 

  58. Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ . Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci USA 1998; 95: 3978–3983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lorenzi HA, Reeves RH . Hippocampal hypocellularity in the Ts65Dn mouse originates early in development. Brain Res 2006; 1104: 153–159.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank MT Muñoz and A López for the technical support. This work was supported by grants from the Ministerio de Educación y Ciencia (SAF2008-04360, JA; SAF2006-04202, JMC), CIBERNED and Red de Terapia Celular (RD06 0010/0006) Fondo de Investigaciones Sanitarias (Instituto de Salud Carlos III), Fundació la Marató de TV3 and High Q Fundation. Mice were generated with support from a grant to Garth M Bray and Albert J Aguayo from the MS Society of Canada. The GFAP promoter sequence was obtained from J Henderson. BDNF c-myc cDNAs were kindly provided by Y Barde. We also thank Dr M Okabe (Research Institute for Microbial Diseases, Osaka University, Japan) for the kind donation of mice transgenic for mutant enhanced green fluorescent protein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Alberch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giralt, A., Friedman, H., Caneda-Ferrón, B. et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. Gene Ther 17, 1294–1308 (2010). https://doi.org/10.1038/gt.2010.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.71

Keywords

This article is cited by

Search

Quick links