Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

rAAV2/5 gene-targeting to rods:dose-dependent efficiency and complications associated with different promoters

Abstract

A prerequisite for using corrective gene therapy to treat humans with inherited retinal degenerative diseases that primarily affect rods is to develop viral vectors that target specifically this population of photoreceptors. The delivery of a viral vector with photoreceptor tropism coupled with a rod-specific promoter is likely to be the safest and most efficient approach to target expression of the therapeutic gene to rods. Three promoters that included a fragment of the proximal mouse opsin promoter (mOP), the human G-protein-coupled receptor protein kinase 1 promoter (hGRK1), or the cytomegalovirus immediate early enhancer combined with the chicken β actin proximal promoter CBA were evaluated for their specificity and robustness in driving GFP reporter gene expression in rods, when packaged in a recombinant adeno-associated viral vector of serotype 2/5 (AAV2/5), and delivered via subretinal injection to the normal canine retina. Photoreceptor-specific promoters (mOP, hGRK1) targeted robust GFP expression to rods, whereas the ubiquitously expressed CBA promoter led to transgene expression in the retinal pigment epithelium, rods, cones and rare Müller, horizontal and ganglion cells. Late onset inflammation was frequently observed both clinically and histologically with all three constructs when the highest viral titers were injected. Cone loss in the injected regions of the retinas that received the highest titers occurred with both the hGRK1 and CBA promoters. Efficient and specific rod transduction, together with preservation of retinal structure was achieved with both mOP and hGRK1 promoters when viral titers in the order of 1011 vg ml–1 were used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  2. Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, Li J et al. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. Mol Ther 2006; 13: 565–572.

    Article  CAS  PubMed  Google Scholar 

  3. Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  4. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  5. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hauswirth W, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Surace EM, Auricchio A . Versatility of AAV vectors for retinal gene transfer. Vision Res 2008; 48: 353–359.

    Article  CAS  PubMed  Google Scholar 

  8. Hildinger M, Auricchio A, Gao G, Wang L, Chirmule N, Wilson JM . Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001; 75: 6199–6203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beltran WA . The use of canine models of inherited retinal degeneration to test novel therapeutic approaches. Vet Ophthalmol 2009; 12: 192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  11. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  12. Bainbridge JW, Mistry A, Schlichtenbrede FC, Smith A, Broderick C, De Alwis M et al. Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Therapy 2003; 10: 1336–1344.

    Article  CAS  PubMed  Google Scholar 

  13. Stieger K, Colle MA, Dubreil L, Mendes-Madeira A, Weber M, Le Meur G et al. Subretinal Delivery of Recombinant AAV Serotype 8 Vector in Dogs Results in Gene Transfer to Neurons in the Brain. Mol Ther 2008; 16: 916–923.

    Article  CAS  PubMed  Google Scholar 

  14. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy 2008; 15: 463–467.

    Article  CAS  PubMed  Google Scholar 

  15. Lotery AJ, Yang GS, Mullins RF, Russell SR, Schmidt M, Stone EM et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther 2003; 14: 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  16. Yang GS, Schmidt M, Yan Z, Lindbloom JD, Harding TC, Donahue BA et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 2002; 76: 7651–7660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li W, Kong F, Li X, Dai X, Liu X, Zheng Q et al. Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye. Mol Vis 2009; 15: 267–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Glushakova LG, Timmers AM, Issa TM, Cortez NG, Pang J, Teusner JT et al. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo? Mol Vis 2006; 12: 298–309.

    CAS  PubMed  Google Scholar 

  19. Khani SC, Pawlyk BS, Bulgakov OV, Kasperek E, Young JE, Adamian M et al. AAV-mediated expression targeting of rod and cone photoreceptors with a human rhodopsin kinase promoter. Invest Ophthalmol Vis Sci 2007; 48: 3954–3961.

    Article  PubMed  Google Scholar 

  20. Li Q, Timmers AM, Guy J, Pang J, Hauswirth WW . Cone-specific expression using a human red opsin promoter in recombinant AAV. Vision Res 2008; 48: 332–338.

    Article  CAS  PubMed  Google Scholar 

  21. Komaromy AM, Alexander JJ, Cooper AE, Chiodo VA, Acland GM, Hauswirth WW et al. Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Therapy 2008; 15: 1049–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petersen-Jones SM, Bartoe JT, Fischer AJ, Scott M, Boye SL, Chiodo V et al. AAV retinal transduction in a large animal model species: comparison of a self-complementary AAV2/5 with a single-stranded AAV2/5 vector. Mol Vis 2009; 15: 1835–1842.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Komaromy AM, Alexander JJ, Chiodo VA, Garcia MM, Tanaka JC, Craft CM et al. Long-term rescue of cone function in a canine model of achromatopsia by rAAV-mediated gene therapy. ARVO; 28 April 2008; Fort Lauderdale, FL, 2008. E-abstract no. 1131.

    Google Scholar 

  24. Vandenberghe LH, Wilson JM . AAV as an immunogen. Curr Gene Ther 2007; 7: 325–333.

    Article  CAS  PubMed  Google Scholar 

  25. Flannery JG, Zolotukhin S, Vaquero MI, LaVail MM, Muzyczka N, Hauswirth WW . Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94: 6916–6921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Provost N, Le Meur G, Weber M, Mendes-Madeira A, Podevin G, Cherel Y et al. Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. Mol Ther 2005; 11: 275–283.

    Article  CAS  PubMed  Google Scholar 

  28. Stieger K, Schroeder J, Provost N, Mendes-Madeira A, Belbellaa B, Le Meur G et al. Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol Ther 2009; 17: 516–523.

    Article  CAS  PubMed  Google Scholar 

  29. Weiss ER, Ducceschi MH, Horner TJ, Li A, Craft CM, Osawa S . Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction. J Neurosci 2001; 21: 9175–9184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM . Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 2004; 6: 395–404.

    Article  CAS  PubMed  Google Scholar 

  31. Pang JJ, Lauramore A, Deng WT, Li Q, Doyle TJ, Chiodo V et al. Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration. Vision Res 2008; 48: 377–385.

    Article  CAS  PubMed  Google Scholar 

  32. Mancuso K, Hauswirth WW, Li Q, Connor TB, Kuchenbecker JA, Mauck MC et al. Gene therapy for red-green colour blindness in adult primates. Nature 2009; 461: 784–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kiwaki K, Kanegae Y, Saito I, Komaki S, Nakamura K, Miyazaki JI et al. Correction of ornithine transcarbamylase deficiency in adult spf(ash) mice and in OTC-deficient human hepatocytes with recombinant adenoviruses bearing the CAG promoter. Hum Gene Ther 1996; 7: 821–830.

    Article  CAS  PubMed  Google Scholar 

  34. Zolotukhin S, Potter M, Hauswirth WW, Guy J, Muzyczka N . A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 1996; 70: 4646–4654.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Therapy 1999; 6: 973–985.

    Article  CAS  PubMed  Google Scholar 

  36. Komaromy AM, Varner SE, de Juan E, Acland GM, Aguirre GD . Application of the new subretinal injection device in the dog. Cell Transplantation 2006; 15: 511–519.

    Article  PubMed  Google Scholar 

  37. Komaromy AM, Acland GM, Aguirre GD . Operating in the dark: a night-vision system for surgery in retinas susceptible to light damage. Arch Ophthalmol 2008; 126: 714–717.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Beltran WA, Hammond P, Acland GM, Aguirre GD . A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006; 47: 1669–1681.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Lingli Zhang (Veterinary Imaging Core Facility, University of Pennsylvania) for assistance with confocal microscopy, Dr Cheryl Craft (University of Southern California, Los Angeles) for providing the human cone arrestin antibody, Dr W Clay Smith (University of Florida) for the polyclonal GFP antibody, Svetlana Savina for histotechnical assistance, the staff of the RDSF facility for help with animal resources, Lydia Melnyk for research coordination, and Mary Leonard (Biomedical Art and Design facility, University of Pennsylvania) for the illustrations. This work was supported by: NIH Grants EY06855, EY13132, EY17549, RR02512, P30EY-001583, The Foundation Fighting Blindness Individual Investigator and Center grants (TA-NP-0607-0393-UPA; C-CMM-04090476-UPA02, and TA-GT-0507-0384-UFL), The Fight for Sight Nowak family grant, Hope for Vision Foundation, and the ONCE International Price for R&D in Biomedicine and New Technologies for the Blind.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W A Beltran.

Ethics declarations

Competing interests

WWH and the University of Florida have a financial interest in the use of rAAV therapies and own equity in a company (AGTC Inc.) that might, in the future commercialize some aspects of this work. All remaining authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltran, W., Boye, S., Boye, S. et al. rAAV2/5 gene-targeting to rods:dose-dependent efficiency and complications associated with different promoters. Gene Ther 17, 1162–1174 (2010). https://doi.org/10.1038/gt.2010.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.56

Keywords

This article is cited by

Search

Quick links