Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen

Abstract

We have evaluated the carbohydrate antigen LewisY (LeY) as a potential target for T-cell immunotherapy of hematological neoplasias. Analysis of 81 primary bone marrow samples revealed moderate LeY expression on plasma cells of myeloma patients and myeloblasts of patients with acute myeloid leukemia (AML) (52 and 46% of cases, respectively). We developed a retroviral vector construct encoding a chimeric T-cell receptor that recognizes the LeY antigen in a major histocompatibility complex-independent manner and delivers co-stimulatory signals to achieve T-cell activation. We have shown efficient transduction of peripheral blood-derived T cells with this construct, resulting in antigen-restricted interferon-γ secretion and cell lysis of LeY-expressing tumor cells. In vivo activity of gene-modified T cells was demonstrated in the delayed growth of myeloma xenografts in NOD/SCID mice, which prolonged survival. Therefore, targeting LeY-positive malignant cells with T cells expressing a chimeric receptor recognizing LeY was effective both in vitro and in a myeloma mouse model. Consequently, we plan to use T cells manufactured under Good Manufacturing Practice conditions in a phase I immunotherapy study for patients with LeY-positive myeloma or AML.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Guglielmi C, Arcese W, Dazzi F, Brand R, Bunjes D, Verdonck LF et al. Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood 2002; 100: 397–405.

    Article  CAS  PubMed  Google Scholar 

  2. Lokhorst HM, Schattenberg A, Cornelissen JJ, Thomas LLM, Verdonck LF . Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood 1997; 90: 4206–4211.

    CAS  PubMed  Google Scholar 

  3. Corradini P, Voena C, Tarella C, Astolfi M, Ladetto M, Palumbo A et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol 1999; 17: 208–215.

    Article  CAS  PubMed  Google Scholar 

  4. Burnett AK WK, Goldstone AH, Stevens RF, Hann IM, Rees JH, Harrison G . The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. Br J Haematol 2002; 118: 385–400.

    Article  PubMed  Google Scholar 

  5. Deschler B, de Witte T, Mertelsmann R, Lubbert M . Treatment decision-making for older patients with high-risk myelodysplastic syndrome or acute myeloid leukemia: problems and approaches. Haematologica 2006; 91: 1513–1522.

    PubMed  Google Scholar 

  6. Martino R, Iacobelli S, Brand R, Jansen T, van Biezen A, Finke J et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood 2006; 108: 836–846.

    Article  CAS  PubMed  Google Scholar 

  7. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med 2007; 356: 1110–1120.

    Article  CAS  PubMed  Google Scholar 

  8. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112: 2261–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bollard CM, Aguilar L, Straathof KC, Gahn B, Huls MH, Rousseau A et al. Cytotoxic T lymphocyte therapy for Epstein-Barr Virus+ Hodgkin's disease. J Exp Med 2004; 200: 1623–1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosenberg SA, Dudley ME . Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci USA 2004; 101 (Suppl_2): 14639–14645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hwu P, Shafer GE, Treisman J, Schindler DG, Gross G, Cowherd R et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain. J Exp Med 1993; 178: 361–366.

    Article  CAS  PubMed  Google Scholar 

  13. Eshhar Z, Waks T, Gross G, Schindler DG . Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90: 720–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM et al. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 2002; 100: 3155–3163.

    Article  CAS  PubMed  Google Scholar 

  15. Westwood JA, Smyth MJ, Teng MWL, Moeller M, Trapani JA, Scott AM et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci USA 2005; 102: 19051–19056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Power BE, Caine JM, Burns JE, Shapira DR, Hattarki MK, Tahtis K et al. Construction, expression and characterisation of a single-chain diabody derived from a humanised anti-Lewis Y cancer targeting antibody using a heat-inducible bacterial secretion vector. Cancer Immunol Immunother 2001; 50: 241–250.

    Article  CAS  PubMed  Google Scholar 

  17. Engels B, Uckert W . Redirecting T lymphocyte specificity by T cell receptor gene transfer—A new era for immunotherapy. Mol Aspects Med 2007; 28: 115–142.

    Article  CAS  PubMed  Google Scholar 

  18. Lamers CH, Gratama JW, Warnaar SO, Stoter G, Bolhuis RL . Inhibition of bispecific monoclonal antibody (bsAb)-targeted cytolysis by human anti-mouse antibodies in ovarian carcinoma patients treated with bsAb-targeted activated T-lymphocytes. Int J Cancer 1995; 60: 450–457.

    Article  CAS  PubMed  Google Scholar 

  19. Moeller M, Haynes NM, Trapani JA, Teng MW, Jackson JT, Tanner JE et al. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Cancer Gene Ther 2004; 11: 371–379.

    Article  CAS  PubMed  Google Scholar 

  20. Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM et al. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. J Immunol 2002; 169: 5780–5786.

    Article  CAS  PubMed  Google Scholar 

  21. Sakamoto J, Furukawa K, Cordon-Cardo C, Yin BWT, Rettig WJ, Oettgen HF et al. Expression of Lewisa, Lewisb, X, and Y blood group antigens in human colonic tumors and normal tissue and in human tumor-derived cell Lines. Cancer Res 1986; 46: 1553–1561.

    CAS  PubMed  Google Scholar 

  22. Kim YS, Yuan M, Itzkowitz SH, Sun Q, Kaizu T, Palekar A et al. Expression of LeY and extended LeY blood group-related antigens in human malignant, premalignant, and nonmalignant colonic tissues. Cancer Res 1986; 46: 5985–5992.

    CAS  PubMed  Google Scholar 

  23. Yin BWT, Finstad CL, Kitamura K, Federici MG, Welshinger M, Kudryashov V et al. Serological and immunochemical analysis of Lewis Y (Ley) blood group antigen expression in epithelial ovarian cancer. Int J Cancer 1996; 65: 406–412.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Zhang HS, Cordon-Cardo C, Reuter VE, Singhal AK, Lloyd KO et al. Selection of tumor antigens as targets for immune attack using immunohistochemistry: II Blood group-related antigens. Int J Cancer 1997; 73: 50–56.

    Article  CAS  PubMed  Google Scholar 

  25. Miyake M, Taki T, Hitomi S, Hakomori S . Correlation of expression of H/Le(y)/Le(b) antigens with survival in patients with carcinoma of the lung. N Engl J Med 1992; 327: 14–28.

    Article  CAS  PubMed  Google Scholar 

  26. Cao Y, Merling A, Karsten U, Schwartz-Albiez R . The fucosylated histo-blood group antigens H type 2 (blood group O, CD173) and Lewis Y (CD174) are expressed on CD34+ hematopoietic progenitors but absent on mature lymphocytes. Glycobiology 2001; 11: 677–683.

    Article  CAS  PubMed  Google Scholar 

  27. Beran M PP, Kantarjian H, Porwit A, Bjorkholm M . Growth of sensitive and drug-resistant human myeloid leukemia cells in SCID mice. Hematol Pathol 1994; 8: 135–154.

    PubMed  Google Scholar 

  28. Cesano A, Hoxie JA, Lange B, Nowell PC, Bishop J, Santoli D . The severe combined immunodeficient (SCID) mouse as a model for human myeloid leukemias. Oncogene 1992; 7: 827–836.

    CAS  PubMed  Google Scholar 

  29. Kitamura K, Stockert E, Garin-Chesa P, Welt S, Lloyd KO, Armour KL et al. Specificity analysis of blood group Lewis-y (Le(y)) antibodies generated against synthetic and natural Le(y) determinants. Proc Natl Acad Sci USA 1994; 91: 12957–12961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harrison SJ, Cook G, Nibbs RJ, Prince HM . Immunotherapy of multiple myeloma: the start of a long and tortuous journey. Expert Rev Anticancer Ther 2006; 6: 1769–1785.

    Article  CAS  PubMed  Google Scholar 

  31. Baldus SE, Palmen C, Thiele J . MUC1 (EMA) expressing plasma cells in bone marrow infiltrated by plasma cell myeloma. Histol Histopathol 2007; 22: 889–893.

    CAS  PubMed  Google Scholar 

  32. Schag K, Schmidt SM, Muller MR, Weinschenk T, Appel S, Weck MM et al. Identification of C-Met oncogene as a broadly expressed tumor-associated antigen recognized by cytotoxic T-lymphocytes. Clin Cancer Res 2004; 10: 3658–3666.

    Article  CAS  PubMed  Google Scholar 

  33. Peinert S, Prince HM, Harrison S . The development of novel immunotherapeutic approaches in multiple myeloma. Leuk Lymphoma 2008; 49: 652–654.

    Article  PubMed  Google Scholar 

  34. Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA . Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 2003; 26: 332–342.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Greiner J, Ringhoffer M, Taniguchi M, Schmitt A, Kirchner D, Krähn G et al. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp Hematol 2002; 30: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  36. Brauer KM, Werth D, von Schwarzenberg K, Bringmann A, Kanz L, Grunebach F et al. BCR-ABL activity is critical for the immunogenicity of chronic myelogenous leukemia cells. Cancer Res 2007; 67: 5489–5497.

    Article  CAS  PubMed  Google Scholar 

  37. Westwood JA, Murray WK, Trivett M, Shin A, Neeson P, MacGregor DP et al. Absence of retroviral vector-mediated transformation of gene-modified T cells after long-term engraftment in mice. Gene Therapy 2008; 15: 1056–1066.

    Article  CAS  PubMed  Google Scholar 

  38. Pai-Scherf LH, Carrasquillo JA, Paik C, Gansow O, Whatley M, Pearson D et al. Imaging and phase I study of 111In- and 90Y-labeled anti-LewisY monoclonal antibody B3. Clin Cancer Res 2000; 6: 1720–1730.

    CAS  PubMed  Google Scholar 

  39. Scott AM, Tebbutt N, Lee F-T, Cavicchiolo T, Liu Z, Gill S et al. A Phase I biodistribution and pharmacokinetic trial of humanized monoclonal antibody Hu3s193 in patients with advanced epithelial cancers that express the Lewis-Y antigen. Clin Cancer Res 2007; 13: 3286–3292.

    Article  CAS  PubMed  Google Scholar 

  40. Saleh MN, Sugarman S, Murray J, Ostroff JB, Healey D, Jones D et al. Phase I trial of the Anti-Lewis Y drug immunoconjugate BR96-Doxorubicin in patients with Lewis Y-expressing epithelial tumors. J Clin Oncol 2000; 18: 2282–2292.

    Article  CAS  PubMed  Google Scholar 

  41. Scott AM, Geleick D, Rubira M, Clarke K, Nice EC, Smyth FE et al. Construction, production, and characterization of humanized Anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors. Cancer Res 2000; 60: 3254–3261.

    CAS  PubMed  Google Scholar 

  42. Liu Z, Panousis C, Smyth FE, Murphy R, Wirth V, Cartwright G et al. Generation of anti-idiotype antibodies for application in clinical immunotherapy laboratory analyses. Hybrid Hybridomics 2003; 22: 219–228.

    Article  CAS  PubMed  Google Scholar 

  43. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001.

    Google Scholar 

  44. Teng MWL, Kershaw MH, Moeller M, Smyth MJ, Darcy PK . Immunotherapy of cancer using systemically delivered gene-modified human t lymphocytes. Hum Gene Ther 2004; 15: 699–708.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Translational Research Grant 6073-06 from the Leukemia and Lymphoma Society USA and by the Leukaemia Foundation of Victoria, Australia and a philanthropic fund from C & M Morris, Albert Park, Victoria, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Peinert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peinert, S., Prince, H., Guru, P. et al. Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 17, 678–686 (2010). https://doi.org/10.1038/gt.2010.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.21

Keywords

This article is cited by

Search

Quick links