Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNA interference-mediated silencing of Foxo3 in antigen-presenting cells as a strategy for the enhancement of DNA vaccine potency

Abstract

The transcription factor Forkhead box O3 (Foxo3) has a critical role in suppressing the expansion of antigen-specific effector T-cell populations; hence, Foxo3 is a potential target for enhancing the antitumor immunity of cancer vaccines. In this report, we evaluated the potential of RNA interference (RNAi)-mediated silencing of Foxo3 in antigen-presenting cells as an adjuvant for HER2/neu DNA cancer vaccines. Bicistronic plasmids expressing the N-terminal extracellular domain of human HER-2/neu and the Foxo3 short hairpin RNA (hN’-neu-Foxo3 shRNA) or the scrambled control (hN’-neu-scramble shRNA) were subcutaneously injected into mice by gene gun administration to elicit antitumor immunity against p185neu-overexpressing MBT-2 bladder tumor cells. We found that mice treated with hN’-neu-Foxo3 shRNA showed greater reductions in tumor growth and longer survival times than mice treated with hN’-neu-scramble shRNA, indicating that the silencing of Foxo3 enhanced the antitumor efficacy of the HER-2/neu cancer vaccine. Cytotoxicity analyses further revealed that the Foxo3 shRNA-enhanced antitumor effect was associated with significant increases in the number of functional CD8+ T cells and in the levels of cytotoxic T lymphocytes activity. Interleukin-6 was induced by hN’-neu-Foxo3 shRNA treatment but did not have a critical role in the antitumor effect of the hN’-neu-Foxo3 shRNA vaccine. Moreover, in vivo lymphocyte depletion analyses confirmed that the antitumor efficacy of the hN’-neu-Foxo3 shRNA vaccine depended on functional CD8+ T cells. Finally, Foxo3 suppression was shown to markedly improve the effect of the HER-2/neu DNA vaccine in limiting the growth and lung metastases of MBT-2 cells. Overall, these results support RNAi-mediated silencing of Foxo3 as an effective strategy to enhance the therapeutic antitumor effect of HER-2/neu DNA vaccines against p185neu-positive tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CJ . Vaccination for treatment and prevention of cancer in animal models. Adv Immunol 2006; 90: 175–213.

    Article  CAS  PubMed  Google Scholar 

  2. Peachman KK, Rao M, Alving CR . Immunization with DNA through the skin. Methods 2003; 31: 232–242.

    Article  CAS  PubMed  Google Scholar 

  3. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN . Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188: 1075–1082.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Meyer M, Wagner E . Recent developments in the application of plasmid DNA-based vectors and small interfering RNA therapeutics for cancer. Hum Gene Ther 2006; 17: 1062–1076.

    Article  CAS  PubMed  Google Scholar 

  5. Kim TW, Lee JH, He L, Boyd DA, Hardwick JM, Hung CF et al. Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res 2005; 65: 309–316.

    CAS  PubMed  Google Scholar 

  6. Huang B, Mao CP, Peng S, Hung CF, Wu TC . RNA interference-mediated in vivo silencing of fas ligand as a strategy for the enhancement of DNA vaccine potency. Hum Gene Ther 2008; 19: 763–773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dharmapuri S, Aurisicchio L, Biondo A, Welsh N, Ciliberto G, La Monica N . Antiapoptotic small interfering RNA as potent adjuvant of DNA vaccination in a mouse mammary tumor model. Hum Gene Ther 2009; 20: 589–597.

    Article  CAS  PubMed  Google Scholar 

  8. Singh A, Nie H, Ghosn B, Qin H, Kwak LW, Roy K . Efficient modulation of T-cell response by dual-mode, single-carrier delivery of cytokine-targeted siRNA and DNA vaccine to antigen-presenting cells. Mol Ther 2008; 16: 2011–2021.

    Article  CAS  PubMed  Google Scholar 

  9. Yen MC, Lin CC, Chen YL, Huang SS, Yang HJ, Chang CP et al. A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin Cancer Res 2009; 15: 641–649.

    Article  CAS  PubMed  Google Scholar 

  10. Peng SL . Immune regulation by Foxo transcription factors. Autoimmunity 2007; 40: 462–469.

    Article  CAS  PubMed  Google Scholar 

  11. Hedrick SM . The cunning little vixen: Foxo and the cycle of life and death. Nat Immunol 2009; 10: 1057–1063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Maiese K, Chong ZZ, Shang YC, Hou J . A ‘FOXO’ in sight: targeting Foxo proteins from conception to cancer. Med Res Rev 2009; 29: 395–418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Su H, Bidere N, Lenardo M . Another fork in the road: Foxo3a regulates NF-kappaB activation. Immunity 2004; 21: 133–134.

    Article  CAS  PubMed  Google Scholar 

  14. Lin L, Hron JD, Peng SL . Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 2004; 21: 203–213.

    Article  CAS  PubMed  Google Scholar 

  15. Pandiyan P, Gärtner D, Soezeri O, Radbruch A, Schulze-Osthoff K, Brunner-Weinzierl MC . CD152 (CTLA-4) determines the unequal resistance of Th1 and Th2 cells against activation-induced cell death by a mechanism requiring PI3 kinase function. J Exp Med 2004; 199: 831–842.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fallarino F, Bianchi R, Orabona C, Vacca C, Belladonna ML, Fioretti MC et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med 2004; 200: 1051–1062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dejean AS, Beisner DR, Ch’en IL, Kerdiles YM, Babour A, Arden KC et al. Transcription factor Foxo 3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 2009; 10: 504–513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Pannellini T, Forni G, Musiani P . Immunobiology of her-2/neu transgenic mice. Breast Dis 2004; 20: 33–42.

    Article  PubMed  Google Scholar 

  19. Pupa SM, Iezzi M, Di Carlo E, Invernizzi A, Cavallo F, Meazza R et al. Inhibition of mammary carcinoma development in HER-2/neu transgenic mice through induction of autoimmunity by xenogeneic DNA vaccination. Cancer Res 2005; 65: 1071–1078.

    CAS  PubMed  Google Scholar 

  20. Quaglino E, Iezzi M, Mastini C, Amici A, Pericle F, Di Carlo E et al. Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res 2004; 64: 2858–2864.

    Article  CAS  PubMed  Google Scholar 

  21. Jacob JB, Kong YC, Nalbantoglu I, Snower DP, Wei WZ . Tumor regression following DNA vaccination and regulatory T cell depletion in neu transgenic mice leads to an increased risk for autoimmunity. J Immunol 2009; 182: 5873–5881.

    Article  CAS  PubMed  Google Scholar 

  22. Lin CC, Chou CW, Shiau AL, Tu CF, Ko TM, Chen YL et al. Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther 2004; 10: 290–301.

    Article  CAS  PubMed  Google Scholar 

  23. Curcio C, Di Carlo E, Clynes R, Smyth MJ, Boggio K, Quaglino E et al. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J Clin Invest 2003; 111: 1161–1170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rohrbach F, Weth R, Kursar M, Sloots A, Mittrücker HW, Wels WS . Targeted delivery of the ErbB2/HER2 tumor antigen to professional APCs results in effective antitumor immunity. J Immunol 2005; 174: 5481–5489.

    Article  CAS  PubMed  Google Scholar 

  25. Dienz O, Rincon M . The effects of IL-6 on CD4T cell responses. Clin Immunol 2009; 13: 27–33.

    Article  Google Scholar 

  26. Rochman I, Paul WE, Ben-Sasson SZ . IL-6 increases primed cell expansion and survival. J Immunol 2005; 174: 4761–4767.

    Article  CAS  PubMed  Google Scholar 

  27. Fidler IJ . The organ microenvironment and cancer metastasis. Differentiation 2002; 70: 498–505.

    Article  PubMed  Google Scholar 

  28. Langley RR, Fidler IJ . Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 2007; 28: 297–321.

    Article  CAS  PubMed  Google Scholar 

  29. Dharmapuri S, Aurisicchio L, Biondo A, Welsh N, Ciliberto G, La Monica N . Antiapoptotic small interfering RNA as potent adjuvant of DNA vaccination in a mouse mammary tumor model. Hum Gene Ther 2009; 20: 589–597.

    Article  CAS  PubMed  Google Scholar 

  30. Kim TW, Hung CF, Ling M, Juang J, He L, Hardwick JM et al. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest 2003; 112: 109–117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhang L, Yi H, Xia XP, Zhao Y . Transforming growth factor-beta: an important role in CD4+CD25+ regulatory T cells and immune tolerance. Autoimmunity 2006; 39: 269–276.

    Article  CAS  PubMed  Google Scholar 

  32. Abbas AK, Murphy KM, Sher A . Functional diversity of helper T lymphocytes. Nature 1996; 383: 787–793.

    Article  CAS  PubMed  Google Scholar 

  33. Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI . Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 1985; 41: 697–706.

    Article  CAS  PubMed  Google Scholar 

  34. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–742.

    Article  CAS  PubMed  Google Scholar 

  35. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA . Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996; 98: 70–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Steitz J, Brück J, Lenz J, Knop J, Tüting T . Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 2001; 61: 8643–8646.

    CAS  PubMed  Google Scholar 

  37. Lai MD, Yen MC, Lin CM, Tu CF, Wang CC, Lin PS et al. The effects of DNA formulation and administration route on cancer therapeutic efficacy with xenogenic EGFR DNA vaccine in a lung cancer animal model. Genet Vaccines Ther 2009; 7: 2.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lin CC, Yen MC, Lin CM, Huang SS, Yang HJ, Chow NH et al. Delivery of noncarrier naked DNA vaccine into the skin by supersonic flow induces a polarized T helper type 1 immune response to cancer. J Gene Med 2008; 10: 679–689.

    Article  CAS  PubMed  Google Scholar 

  39. Rovero S, Amici A, Di Carlo E, Bei R, Nanni P, Quaglino E et al. DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 2000; 165: 5133–5142.

    Article  CAS  PubMed  Google Scholar 

  40. Reilly RT, Machiels JP, Emens LA, Ercolini AM, Okoye FI, Lei RY et al. The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res 2001; 61: 880–883.

    CAS  PubMed  Google Scholar 

  41. Orlandi F, Venanzi FM, Concetti A, Yamauchi H, Tiwari S, Norton L et al. Antibody and CD8+ T cell responses against HER2/neu required for tumor eradication after DNA immunization with a Flt-3 ligand fusion vaccine. Clin Cancer Res 2007; 13: 6195–6203.

    Article  CAS  PubMed  Google Scholar 

  42. Cappello P, Triebel F, Iezzi M, Caorsi C, Quaglino E, Lollini PL et al. LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Res 2003; 63: 2518–2525.

    CAS  PubMed  Google Scholar 

  43. Aurisicchio L, Peruzzi D, Conforti A, Dharmapuri S, Biondo A, Giampaoli S et al. Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9. Clin Cancer Res 2009; 15: 1575–1584.

    Article  CAS  PubMed  Google Scholar 

  44. Sloots A, Mastini C, Rohrbach F, Weth R, Curcio C, Burkhardt U et al. DNA vaccines targeting tumor antigens to B7 molecules on antigen-presenting cells induce protective antitumor immunity and delay onset of HER-2/Neu-driven mammary carcinoma. Clin Cancer Res 2008; 14: 6933–6943.

    Article  CAS  PubMed  Google Scholar 

  45. Connor J, Bannerji R, Saito S, Heston W, Fair W, Gilboa E . Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J Exp Med 1993; 177: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  46. Lu TJ, Lai WY, Huang CY, Hsieh WJ, Yu JS, Hsieh YJ et al. Inhibition of cell migration by autophosphorylated mammalian sterile 20-like kinase 3 (MST3) involves paxillin and proteintyrosine phosphatase-PEST. J Biol Chem 2006; 281: 38405–38417.

    Article  CAS  PubMed  Google Scholar 

  47. Chu CL, Lowell CA . The Lyn tyrosine kinase differentially regulates dendritic cell generation and maturation. J Immunol 2005; 175: 2880–2889.

    Article  CAS  PubMed  Google Scholar 

  48. Tomiyama-Hanayama M, Rakugi H, Kohara M, Mima T, Adachi Y, Ohishi M et al. Effect of interleukin-6 receptor blockage on renal injury in apolipoprotein E-deficient mice. Am J Physiol Renal Physiol 2009; 297: F679–F684.

    Article  CAS  PubMed  Google Scholar 

  49. Katsume A, Saito H, Yamada Y, Yorozu K, Ueda O, Akamatsu K et al. Anti-interleukin 6 (IL-6) receptor antibody suppresses Castleman's disease like symptoms emerged in IL-6 transgenic mice. Cytokine 2002; 20: 304–311.

    Article  CAS  PubMed  Google Scholar 

  50. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M . NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 2008; 36: W509–W512.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanović S . SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50: 213–219.

    Article  CAS  PubMed  Google Scholar 

  52. Opferman JT, Korsmeyer SJ . Apoptosis in the development and maintenance of the immune system. Nat Immunol 2003; 4: 410–415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Taichung Veterans General Hospital and National Chung Hsing University (TCVGH-NCHU-997602) Taichung, Taiwan and in part by the Ministry of Education, Taiwan, ROC under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-C Lin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ST., Chang, CC., Yen, MC. et al. RNA interference-mediated silencing of Foxo3 in antigen-presenting cells as a strategy for the enhancement of DNA vaccine potency. Gene Ther 18, 372–383 (2011). https://doi.org/10.1038/gt.2010.146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.146

Keywords

This article is cited by

Search

Quick links