Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution

Abstract

Newly isolated serotypes of AAV readily cross the endothelial barrier to provide efficient transgene delivery throughout the body. However, tissue-specific expression is preferred in most experimental studies and gene therapy protocols. Previous efforts to restrict gene expression to the myocardium often relied on direct injection into heart muscle or intracoronary perfusion. Here, we report an AAV vector system employing the cardiac troponin T (cTnT) promoter. Using luciferase and enhanced green fluorescence protein (eGFP), the efficiency and specificity of cardiac reporter gene expression using AAV serotype capsids: AAV-1, 2, 6, 8 or 9 were tested after systemic administration to 1-week-old mice. Luciferase assays showed that the cTnT promoter worked in combination with each of the AAV serotype capsids to provide cardiomyocyte-specific gene expression, but AAV-9 followed closely by AAV-8 was the most efficient. AAV9-mediated gene expression from the cTnT promoter was 640-fold greater in the heart compared with the next highest tissue (liver). eGFP fluorescence indicated a transduction efficiency of 96% using AAV-9 at a dose of only 3.15 × 1010 viral particles per mouse. Moreover, the intensity of cardiomyocyte eGFP fluorescence measured on a cell-by-cell basis revealed that AAV-mediated gene expression in the heart can be modeled as a Poisson distribution, requiring an average of nearly two vector genomes per cell to attain an 85% transduction efficiency.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Su H, Lu R, Kan YW . Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Natl Acad Sci USA 2000; 97: 13801–13806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Svensson EC, Marshall DJ, Woodard K, Lin H, Jiang F, Chu L et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999; 99: 201–205.

    Article  CAS  PubMed  Google Scholar 

  3. Champion HC, Georgakopoulos D, Haldar S, Wang L, Wang Y, Kass DA . Robust adenoviral and adeno-associated viral gene transfer to the in vivo murine heart: application to study of phospholamban physiology. Circulation 2003; 108: 2790–2797.

    Article  CAS  PubMed  Google Scholar 

  4. Iwatate M, Gu Y, Dieterle T, Iwanaga Y, Peterson KL, Hoshijima M et al. In vivo high-efficiency transcoronary gene delivery and Cre-LoxP gene switching in the adult mouse heart. Gene Therapy 2003; 10: 1814–1820.

    Article  CAS  PubMed  Google Scholar 

  5. Greelish JP, Su LT, Lankford EB, Burkman JM, Chen H, Konig SK et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nat Med 1999; 5: 439–443.

    Article  CAS  PubMed  Google Scholar 

  6. Aikawa R, Huggins GS, Snyder RO . Cardiomyocyte-specific gene expression following recombinant adeno-associated viral vector transduction. J Biol Chem 2002; 277: 18979–18985.

    Article  CAS  PubMed  Google Scholar 

  7. Prasad K-MR, Xu Y, Yang Z, Toufektsian M-C, Berr SS, French BA . Topoisomerase inhibition accelerates gene expression after adeno-associated virus-mediated gene transfer to the mammalian heart. Mol Ther: J Am Soc Gene Therapy 2007; 15: 764–771.

    Article  CAS  Google Scholar 

  8. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther: J Am Soc Gene Therapy 2006; 14: 316–327.

    Article  CAS  Google Scholar 

  9. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther: J Am Soc Gene Therapy 2006; 14: 45–53.

    Article  CAS  Google Scholar 

  10. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: e3–e9.

    Article  CAS  PubMed  Google Scholar 

  11. Bostick B, Ghosh A, Yue Y, Long C, Duan D . Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Therapy 2007; 14: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  12. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palomeque J, Chemaly ER, Colosi P, Wellman JA, Zhou S, Del Monte F et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo.[erratum appears in Gene Ther 2007 Jul;14(13):1055]. Gene Therapy 2007; 14: 989–997.

    Article  CAS  PubMed  Google Scholar 

  16. Yue Y, Ghosh A, Long C, Bostick B, Smith BF, Kornegay JN et al. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther: J Am Soc Gene Therapy 2008; 16: 1944–1952.

    Article  CAS  Google Scholar 

  17. Gao G-P, Lu Y, Sun X, Johnston J, Calcedo R, Grant R et al. High-level transgene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes. J. Virol 2006; 80: 6192–6194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marian AJ, Roberts R . The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 2001; 33: 655–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma H, Sumbilla CM, Farrance IKG, Klein MG, Inesi G . Cell-specific expression of SERCA, the exogenous Ca2+ transport ATPase, in cardiac myocytes. Am J Physiol - Cell Physiol 2004; 286: C556–C564.

    Article  CAS  PubMed  Google Scholar 

  20. Nakai H, Fuess S, Storm TA, Muramatsu S-i, Nara Y, Kay MA . Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kornowski R, Leon MB, Fuchs S, Vodovotz Y, Flynn MA, Gordon DA et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol 2000; 35: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  22. Su H, Kan YW . Adeno-associated viral vector-delivered hypoxia-inducible gene expression in ischemic hearts. Methods Mol Biol 2007; 366: 331–342.

    Article  CAS  PubMed  Google Scholar 

  23. Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz W-M, Katus HA et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 2006; 70: 70–78.

    Article  PubMed  Google Scholar 

  24. Raake PW, Hinkel R, Muller S, Delker S, Kreuzpointner R, Kupatt C et al. Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Therapy 2008; 15: 12–17.

    Article  CAS  PubMed  Google Scholar 

  25. Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G et al. AAV9 Provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Therapy 2008; 19: 1359–1368.

    Article  CAS  Google Scholar 

  26. Uijlenhoet R, Stricker JNM, Torfs PJJF, Creutin JD . Towards a stochastic model of rainfall for radar hydrology: testing the Poisson homogeneity hypothesis. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 1999; 24: 747–755.

    Article  Google Scholar 

  27. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. (Erratum appears in J Virol 1999 Jan; 73(1):861). J Virol 1998; 72: 8568–8577.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Schnepp BC, Clark KR, Klemanski DL, Pacak CA, Johnson PR . Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 2003; 77: 3495–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fehse B, Kustikova OS, Bubenheim M, Baum C . Pois(s)on – It's a Question of Dose. Gene Therapy 2004; 11: 879–881.

    Article  CAS  PubMed  Google Scholar 

  30. Vassalli G, Büeler H, Dudler J, von Segesser LK, Kappenberger L . Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Inter J Cardiol 2003; 90: 229–238.

    Article  Google Scholar 

  31. Du L, Kido M, Lee DV, Rabinowitz JE, Samulski RJ, Jamieson SW et al. Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol Ther 2004; 10: 604–608.

    Article  CAS  PubMed  Google Scholar 

  32. Barker SD, Dmitriev IP, Nettelbeck DM, Liu B, Rivera AA, Alvarez RD et al. Combined transcriptional and transductional targeting improves the specificity and efficacy of adenoviral gene delivery to ovarian carcinoma. Gene Therapy 2003; 10: 1198–1204.

    Article  CAS  PubMed  Google Scholar 

  33. Prasad KM, Yang Z, Bleich D, Nadler JL . Adeno-associated virus vector mediated gene transfer to pancreatic beta cells. Gene Therapy 2000; 7: 1553–1561.

    Article  CAS  PubMed  Google Scholar 

  34. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Collaco RF, Cao X, Trempe JP . A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 1999; 238: 397–405.

    Article  CAS  PubMed  Google Scholar 

  36. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther: J Am Soc Gene Therapy 2003; 7: 839–850.

    Article  CAS  Google Scholar 

  37. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jordan M, Schallhorn A, Wurm FM . Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 1996; 24: 596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ried MU, Girod A, Leike K, Buning H, Hallek M . Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J Virol 2002; 76: 4559–4566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS . Optical imaging of cardiac reporter gene expression in living rats. Circulation 2002; 105: 1631–1634.

    Article  PubMed  Google Scholar 

  42. Acton ST, Mukherjee DP . Scale space classification using area morphology. IEEE Transactions on Image Processing 2000; 9: 623–635.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr James Trempe for pSH5, Dr Mark Kay for pDP1 and pDP6, Dr James Wilson for p5E18-VD2/8 and p5E18-VD2/9 and Daniel M O'Connor for technical contributions. This work was supported by NIH R01s HL058582 and HL069494 (to BAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A French.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prasad, KM., Xu, Y., Yang, Z. et al. Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther 18, 43–52 (2011). https://doi.org/10.1038/gt.2010.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.105

Keywords

  • AAV
  • cardiomyocyte specific
  • cardiac troponin T promoter
  • Poisson distribution

This article is cited by

Search

Quick links