Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of cross-reactive cell-mediated immune responses among human, bovine and porcine adenoviruses

Abstract

The absence of preexisting immunity against porcine adenovirus (Ad) serotype 3 (PAd3) and bovine Ad serotype 3 (BAd3) in humans makes them attractive alternatives to human Ad serotype 5 (HAd5) vectors. To determine whether there is significant cross-reactivity among HAd5, BAd3 and PAd3 at the level of cell-mediated immune responses, BALB/c mice were inoculated intraperitoneally with wild-type (WT) or replication-defective (RD) HAd5, BAd3 or PAd3. After 35 days of the first inoculation, cross-reactive CD8+ cytotoxic T cells, as well as CD4+ Th1- and Th2-helper T cells, in the spleen were analyzed by enzyme-linked-immunospot, flow cytometry and cytotoxic T lymphocyte assays. Virus-neutralization assays were used to evaluate humoral cross-reactivity. CD8+ or CD4+ T cells primed with WT or RD HAd5, PAd3 or BAd3 showed significant (P<0.005) reactivity with homologous Ad antigens, whereas only minimal cross-reactivity was observed on stimulation with heterologous Ad antigens. Ad-neutralizing antibodies were found to be homologous Ad specific. Overall, these results suggest that there is no significant immunological cross-reactivity among HAd5, BAd3 and PAd3, thereby supporting the rationale for the use of BAd3 and PAd3 as alternative HAd vectors to circumvent anti-HAd immunity in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Edelstein ML, Abedi MR, Wixon J, Edelstein RM . Gene therapy clinical trials worldwide 1989-2004-an overview. J Gene Med 2004; 6: 597–602.

    Article  PubMed  Google Scholar 

  2. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM . Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Moffatt S, Hays J, HogenEsch H, Mittal SK . Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 2000; 272: 159–167.

    Article  CAS  PubMed  Google Scholar 

  5. Morral N, O’Neal W, Rice K, Leland M, Kaplan J, Piedra PA et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 1999; 96: 12816–12821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mastrangeli A, Harvey BG, Yao J, Wolff G, Kovesdi I, Crystal RG et al. “Sero-switch” adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum Gene Ther 1996; 7: 79–87.

    Article  CAS  PubMed  Google Scholar 

  7. Bangari DS, Mittal SK . Development of nonhuman adenoviruses as vaccine vectors. Vaccine 2006; 24: 849–862.

    Article  CAS  PubMed  Google Scholar 

  8. Stone D, Lieber A . New serotypes of adenoviral vectors. Curr Opin Mol Ther 2006; 8: 423–431.

    CAS  PubMed  Google Scholar 

  9. Wold WS, Horwitz MS . Adenoviruses. In: Knipe DM and Howley PM (ed). Fields Virology. Walters Kluwer Health-Lippincott Williams & Wilkins: Philadelphia, 2007, pp 2395–2436.

    Google Scholar 

  10. Bauer U, Flunker G, Bruss K, Kallwellis K, Liebermann H, Luettich T et al. Detection of antibodies against adenovirus protein IX, fiber, and hexon in human sera by immunoblot assay. J Clin Microbiol 2005; 43: 4426–4433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bakay M, Szalay K, Beladi I, Balint E, Lengyel A, Adam E et al. Cross-reactivity between human adenoviruses in delayed-type hypersensitivity. APMIS 2005; 113: 197–202.

    Article  PubMed  Google Scholar 

  12. Heemskerk B, Veltrop-Duits LA, van VT, ten Dam MM, Heidt S, Toes RE et al. Extensive cross-reactivity of CD4+ adenovirus-specific T cells: implications for immunotherapy and gene therapy. J Virol 2003; 77: 6562–6566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith CA, Woodruff LS, Rooney C, Kitchingman GR . Extensive cross-reactivity of adenovirus-specific cytotoxic T cells. Hum Gene Ther 1998; 9: 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  14. Olive M, Eisenlohr LC, Flomenberg P . Quantitative analysis of adenovirus-specific CD4+ T-cell responses from healthy adults. Viral Immunol 2001; 14: 403–413.

    Article  CAS  PubMed  Google Scholar 

  15. Flomenberg P, Piaskowski V, Truitt RL, Casper JT . Characterization of human proliferative T cell responses to adenovirus. J Infect Dis 1995; 171: 1090–1096.

    Article  CAS  PubMed  Google Scholar 

  16. Flomenberg P, Piaskowski V, Truitt RL, Casper JT . Human adenovirus-specific CD8+ T-cell responses are not inhibited by E3-19 K in the presence of gamma interferon. J Virol 1996; 70: 6314–6322.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bangari DS, Shukla S, Mittal SK . Comparative transduction efficiencies of human and nonhuman adenoviral vectors in human, murine, bovine, and porcine cells in culture. Biochem Biophys Res Commun 2005; 327: 960–966.

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Bangari DS, Sharma A, Mittal SK . Bovine adenovirus serotype 3 utilizes sialic acid as a cellular receptor for virus entry. Virology 2009; 392: 162–168.

    Article  CAS  PubMed  Google Scholar 

  19. Bangari DS, Mittal SK . Porcine adenovirus serotype 3 internalization is independent of CAR and alpha(v)beta(3) or alpha(v)beta(5) integrin. Virology 2005; 332: 157–166.

    Article  CAS  PubMed  Google Scholar 

  20. Bangari DS, Sharma A, Mittal SK . Bovine adenovirus type 3 internalization is independent of primary receptors of human adenovirus type 5 and porcine adenovirus type 3. Biochem Biophys Res Commun 2005; 331: 1478–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma A, Bangari DS, Tandon M, Pandey A, HogenEsch H, Mittal SK . Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model. Virology 2009; 386: 44–54.

    Article  CAS  PubMed  Google Scholar 

  22. Singh N, Pandey A, Jayashankar L, Mittal SK . Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol Ther 2008; 16: 965–971.

    Article  CAS  PubMed  Google Scholar 

  23. Doherty PC, Turner SJ . Memories of virus-specific CD8+ T cells. Immunol Cell Biol 2004; 82: 136–140.

    Article  CAS  PubMed  Google Scholar 

  24. Pichla-Gollon SL, Lin SW, Hensley SE, Lasaro MO, Herkenhoff-Haut L, Drinker M et al. Effect of preexisting immunity on an adenovirus vaccine vector: in vitro neutralization assays fail to predict inhibition by antiviral antibody in vivo. J Virol 2009; 83: 5567–5573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perreau M, Kremer EJ . The conundrum between immunological memory to adenovirus and their use as vectors in clinical gene therapy. Mol Biotechnol 2006; 34: 247–256.

    Article  CAS  PubMed  Google Scholar 

  26. Jooss K, Ertl HC, Wilson JM . Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver. J Virol 1998; 72: 2945–2954.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Molinier-Frenkel V, Lengagne R, Gaden F, Hong SS, Choppin J, Gahery-Segard H et al. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J Virol 2002; 76: 127–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rawle FC, Knowles BB, Ricciardi RP, Brahmacheri V, Duerksen-Hughes P, Wold WS et al. Specificity of the mouse cytotoxic T lymphocyte response to adenovirus 5. E1A is immunodominant in H-2b, but not in H-2d or H-2k mice. J Immunol 1991; 146: 3977–3984.

    CAS  PubMed  Google Scholar 

  29. McKelvey T, Tang A, Bett AJ, Casimiro DR, Chastain M . T-cell response to adenovirus hexon and DNA-binding protein in mice. Gene Ther 2004; 11: 791–796.

    Article  CAS  PubMed  Google Scholar 

  30. Olive M, Eisenlohr L, Flomenberg N, Hsu S, Flomenberg P . The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope. Hum Gene Ther 2002; 13: 1167–1178.

    Article  CAS  PubMed  Google Scholar 

  31. Rux JJ, Kuser PR, Burnett RM . Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 2003; 77: 9553–9566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J . Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 1999; 6: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  33. Perreau M, Kremer EJ . Frequency, proliferation, and activation of human memory T cells induced by a nonhuman adenovirus. J Virol 2005; 79: 14595–14605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duncan SJ, Gordon FC, Gregory DW, McPhie JL, Postlethwaite R, White R et al. Infection of mouse liver by human adenovirus type 5. J Gen Virol 1978; 40: 45–61.

    Article  CAS  PubMed  Google Scholar 

  35. Tripathy SK, Black HB, Goldwasser E, Leiden JM . Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med 1996; 2: 545–550.

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Haecker SE, Su Q, Wilson JM . Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet 1996; 5: 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y, Jooss KU, Su Q, Ertl HC, Wilson JM . Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther 1996; 3: 137–144.

    PubMed  Google Scholar 

  38. Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther 2004; 11: 757–766.

    Article  CAS  PubMed  Google Scholar 

  39. Bangari DS, Mittal SK . Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture. Virus Res 2004; 105: 127–136.

    Article  CAS  PubMed  Google Scholar 

  40. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  PubMed  Google Scholar 

  41. van Olphen AL, Tikoo SK, Mittal SK . Characterization of bovine adenovirus type 3 E1 proteins and isolation of E1-expressing cell lines. Virology 2002; 295: 108–118.

    Article  CAS  PubMed  Google Scholar 

  42. van Olphen AL, Mittal SK . Development and characterization of bovine x human hybrid cell lines that efficiently support the replication of both wild-type bovine and human adenoviruses and those with E1 deleted. J Virol 2002; 76: 5882–5892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barouch DH, Pau MG, Custers JH, Koudstaal W, Kostense S, Havenga MJ et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 2004; 172: 6290–6297.

    Article  CAS  PubMed  Google Scholar 

  44. Vogels R, Zuijdgeest D, van RR, Hartkoorn E, Damen I, de Bethune MP et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003; 77: 8263–8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parish CR, Mullbacher A . Automated colorimetric assay for T cell cytotoxicity. J Immunol Methods 1983; 58: 225–237.

    Article  CAS  PubMed  Google Scholar 

  46. Sambhara S, Switzer I, Kurichh A, Miranda R, Urbanczyk L, James O et al. Enhanced antibody and cytokine responses to influenza viral antigens in perforin-deficient mice. Cell Immunol 1998; 187: 13–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service grant CA110176 from the National Cancer Institute. We are thankful to Jane Kovach for her excellent secretarial assistance and Ching-Yun Chang for help with statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Mittal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Tandon, M., Ahi, Y. et al. Evaluation of cross-reactive cell-mediated immune responses among human, bovine and porcine adenoviruses. Gene Ther 17, 634–642 (2010). https://doi.org/10.1038/gt.2010.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.1

Keywords

This article is cited by

Search

Quick links