Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Redirecting human CD4+CD25+ regulatory T cells from the peripheral blood with pre-defined target specificity

Abstract

Recent insight into the balance of self-tolerance and auto-aggression has raised interest in using human regulatory T (Treg) cells for adoptive immunotherapy of unlimited autoimmune diseases including type-1 diabetes, rhematoid arthritis and multiple sclerosis. The therapeutic use of Treg cells, however, is so far hampered by the inefficiency of current protocols in making them accessible for genetic manipulations. We report here that TCR/CD3 stimulation that is accompanied by extensive CD28 costimulation makes human Treg cells susceptible to retroviral gene transfer ex vivo while preserving their properties in vitro and in vivo. To show the power of genetic manipulation of human Treg cells, we engineered ‘designer Treg cells’ by retroviral expression of a chimeric immunoreceptor with defined specificity, which activates Treg cells in a ligand-dependent manner to proliferate, to secrete high amounts of interleukin-10 and to repress an ongoing cytolytic T-cell response in vivo. The procedure in genetically modifying human Treg cells ex vivo will open a panel of applications for their use in the adoptive therapy of deregulated immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Thornton AM, Shevach EM . CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188: 287–296.

    Article  CAS  Google Scholar 

  2. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM . CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160: 1212–1218.

    CAS  PubMed  Google Scholar 

  3. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 2002; 109: 131–140.

    Article  CAS  Google Scholar 

  4. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA . Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004; 199: 971–979.

    Article  CAS  Google Scholar 

  5. Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 2004; 200: 277–285.

    Article  CAS  Google Scholar 

  6. Wood KJ, Sakaguchi S . Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199–210.

    Article  CAS  Google Scholar 

  7. Yamazaki S, Iyoda T, Tarbell K, Olson K, Velinzon K, Inaba K et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 2003; 198: 235–247.

    Article  CAS  Google Scholar 

  8. Setoguchi R, Hori S, Takahashi T, Sakaguchi S . Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005; 201: 723–735.

    Article  CAS  Google Scholar 

  9. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M . Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 2004; 104: 895–903.

    Article  CAS  Google Scholar 

  10. Levings MK, Sangregorio R, Roncarolo MG . Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193: 1295–1302.

    Article  CAS  Google Scholar 

  11. Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 2006; 108: 4260–4267.

    Article  CAS  Google Scholar 

  12. Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH, Blazar BR et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 2004; 104: 453–461.

    Article  CAS  Google Scholar 

  13. Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN . Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001; 31: 1122–1131.

    Article  CAS  Google Scholar 

  14. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY . Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 2004; 21: 267–277.

    Article  CAS  Google Scholar 

  15. Hombach AA, Kofler D, Hombach A, Rappl G, Abken H . Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J Immunol 2007; 179: 7924–7931.

    Article  CAS  Google Scholar 

  16. Greenstein AJ, Panvelliwalla DK, Katz LB, Heimann TM, Donnelly J, Pertsimlidis D et al. Tissue carcinoembryonic antigen, dysplasia, and disease duration in colonic inflammatory bowel disease. Am J Gastroenterol 1982; 77: 212–215.

    CAS  PubMed  Google Scholar 

  17. Fischbach W, Mossner J, Seyschab H, Hohn H . Tissue carcinoembryonic antigen and DNA aneuploidy in precancerous and cancerous colorectal lesions. Cancer 1990; 65: 1820–1824.

    Article  CAS  Google Scholar 

  18. Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A et al. Peripheral and intestinal regulatory CD4+CD25(high) T cells in inflammatory bowel disease. Gastroenterology 2005; 128: 1868–1878.

    Article  CAS  Google Scholar 

  19. Elinav E, Waks T, Eshhar Z . Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 2008; 134: 2014–2024.

    Article  Google Scholar 

  20. Weijtens ME, Willemsen RA, Hart EH, Bolhuis RL . A retroviral vector system ‘STITCH’ in combination with an optimized single chain antibody chimeric receptor gene structure allows efficient gene transduction and expression in human T lymphocytes. Gene Therapy 1998; 5: 1195–1203.

    Article  CAS  Google Scholar 

  21. Schwegler C, Dorn-Beineke A, Nittka S, Stocking C, Neumaier M . Monoclonal anti-idiotype antibody 6G6.C4 fused to GM-CSF is capable of breaking tolerance to carcinoembryonic antigen (CEA) in CEA-transgenic mice. Cancer Res 2005; 65: 1925–1933.

    Article  CAS  Google Scholar 

  22. Pohl C, Denfeld R, Renner C, Jung W, Bohlen H, Sahin U et al. CD30-antigen-specific targeting and activation of T cells via murine bispecific monoclonal antibodies against CD3 and CD28: potential use for the treatment of Hodgkin's lymphoma. Int J Cancer 1993; 54: 820–827.

    Article  CAS  Google Scholar 

  23. Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol 2001; 167: 6123–6131.

    Article  CAS  Google Scholar 

  24. Willemsen RA, Weijtens ME, Ronteltap C, Eshhar Z, Gratama JW, Chames P et al. Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Therapy 2000; 7: 1369–1377.

    Article  CAS  Google Scholar 

  25. Hombach A, Schneider C, Sent D, Koch D, Willemsen RA, Diehl V et al. An entirely humanized CD3 zeta-chain signaling receptor that directs peripheral blood t cells to specific lysis of carcinoembryonic antigen-positive tumor cells. Int J Cancer 2000; 88: 115–120.

    Article  CAS  Google Scholar 

  26. Hombach A, Sent D, Schneider C, Heuser C, Koch D, Pohl C et al. T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res 2001; 61: 1976–1982.

    CAS  PubMed  Google Scholar 

  27. Weijtens ME, Hart EH, Bolhuis RL . Functional balance between T cell chimeric receptor density and tumor associated antigen density: CTL mediated cytolysis and lymphokine production. Gene Therapy 2000; 7: 35–42.

    Article  CAS  Google Scholar 

  28. Angulo R, Fulcher DA . Measurement of Candida-specific blastogenesis: comparison of carboxyfluorescein succinimidyl ester labelling of T cells, thymidine incorporation, and CD69 expression. Cytometry 1998; 34: 143–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Birgit Hops, Frank Steiger and Petra Hofmann for technical assistance. This study was supported by the European Commission through the ATTACK project and the Fortune program of the Medical Faculty of the University of Cologne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Hombach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hombach, A., Kofler, D., Rappl, G. et al. Redirecting human CD4+CD25+ regulatory T cells from the peripheral blood with pre-defined target specificity. Gene Ther 16, 1088–1096 (2009). https://doi.org/10.1038/gt.2009.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.75

Keywords

This article is cited by

Search

Quick links