Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chitosan–plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies

Abstract

Growth factor therapy is an emerging treatment modality that enhances tissue vascularization, promotes healing and regeneration and can treat a variety of inflammatory diseases. Both recombinant human growth factor proteins and their gene therapy are in human clinical trials to heal chronic wounds. As platelet-derived growth factor-bb (PDGF-BB) and fibroblast growth factor-2 (FGF-2) are known to induce chemotaxis, proliferation, differentiation, and matrix synthesis, we investigated a non-viral means for gene delivery of these factors using the cationic polysaccharide chitosan. Chitosan is a polymer of glucosamine and N-acetyl-glucosamine, in which the percentage of the residues that are glucosamine is called the degree of deacetylation (DDA). The purpose of this study was to express PDGF-BB and FGF-2 genes in mice using chitosan–plasmid DNA nanoparticles for the controlled delivery of genetic material in a specific, efficient, and safe manner. PDGF-BB and FGF-2 genes were amplified from human tissues by RT–PCR. To increase the secretion of FGF-2, a recombinant 4sFGF-2 was constructed bearing eight amino-acid residues of the signal peptide of FGF-4. PCR products were inserted into the expression vector pVax1 to produce recombinant plasmids pVax1-4sFGF2 and pVax1-PDGF-BB, which were then injected into BALB/C mice in the format of polyelectrolyte nanocomplexes with specific chitosans of controlled DDA and molecular weight, including 92-10, 80-10, and 80-80 (DDA-number average molecular weight or Mn in kDa). ELISA assays on mice sera showed that recombinant FGF-2 and PDGF-BB proteins were efficiently expressed and specific antibodies to these proteins could be identified in sera of injected mice, but with levels that were clearly dependent on the specific chitosan used. We found high DDA low molecular weight chitosans to be efficient protein expressors with minimal or no generation of neutralizing antibodies, while lowering DDA resulted in greater antibody levels and correspondingly lower levels of detected recombinant protein. Histological analyses corroborated these results by revealing greater inflammatory infiltrates in lower DDA chitosans, which produced higher antibody titers. We found, in general, a more efficient delivery of the plasmids by subcutaneous than by intramuscular injection. Specific chitosan carriers were identified to be either efficient non-toxic therapeutic protein delivery systems or vectors for DNA vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 9
Figure 8
Figure 10

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Coulier F, Pontarotti P, Roubin R, Hartung H, Goldfarb M, Birnbaum D . Of worms and men: an evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families. J Mol Evol 1997; 44: 43–56.

    Article  CAS  PubMed  Google Scholar 

  2. Fernig DG, Gallagher JT . Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res 1994; 5: 353–377.

    Article  CAS  PubMed  Google Scholar 

  3. Mignatti P, Morimoto T, Rifkin DB . Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J Cell Physiol 1992; 151: 81–93.

    Article  CAS  PubMed  Google Scholar 

  4. Sohn YD, Lim HJ, Hwang KC, Kwon JH, Park HY, Chung KH et al. A novel recombinant basic fibroblast growth factor and its secretion. Biochem Biophys Res Commun 2001; 284: 931–936.

    Article  CAS  PubMed  Google Scholar 

  5. Heldin CH, Ostman A, Ronnstrand L . Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1998; 1378: F79–113.

    CAS  PubMed  Google Scholar 

  6. Millette E, Rauch BH, Defawe O, Kenagy RD, Daum G, Clowes AW . Platelet-derived growth factor-BB-induced human smooth muscle cell proliferation depends on basic FGF release and FGFR-1 activation. Circ Res 2005; 96: 172–179.

    Article  CAS  PubMed  Google Scholar 

  7. Ross R, Glomset J, Kariya B, Harker L . A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 1974; 71: 1207–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL . Growth factors in the treatment of diabetic foot ulcers. Br J Surg 2003; 90: 133–146.

    Article  CAS  PubMed  Google Scholar 

  9. Heldin CH, Westermark B . Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79: 1283–1316.

    Article  CAS  PubMed  Google Scholar 

  10. Ross R . Platelet-derived growth factor. Lancet 1989; 1: 1179–1182.

    Article  CAS  PubMed  Google Scholar 

  11. Nagai MK, Embil JM . Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert Opin Biol Ther 2002; 2: 211–218.

    Article  CAS  PubMed  Google Scholar 

  12. Kitamura M, Nakashima K, Kowashi Y, Fujii T, Shimauchi H, Sasano T et al. Periodontal tissue regeneration using fibroblast growth factor-2: randomized controlled phase II clinical trial. PLoS ONE 2008; 3: e2611.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGuire MK, Kao RT, Nevins M, Lynch SE . rhPDGF-BB promotes healing of periodontal defects: 24-month clinical and radiographic observations. Int J Periodontics Restorative Dent 2006; 26: 223–231.

    PubMed  Google Scholar 

  14. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003; 9: 604–613.

    Article  CAS  PubMed  Google Scholar 

  15. MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 1998; 56: 259–272.

    Article  CAS  PubMed  Google Scholar 

  16. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 2001; 70: 399–421.

    Article  CAS  PubMed  Google Scholar 

  17. Lavertu M, Methot S, Tran-Khanh N, Buschmann MD . High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 2006; 27: 4815–4824.

    Article  CAS  PubMed  Google Scholar 

  18. Dodane V, Amin Khan M, Merwin JR . Effect of chitosan on epithelial permeability and structure. Int J Pharm 1999; 182: 21–32.

    Article  CAS  PubMed  Google Scholar 

  19. McNeela EA, O'Connor D, Jabbal-Gill I, Illum L, Davis SS, Pizza M et al. A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine 2000; 19: 1188–1198.

    Article  CAS  PubMed  Google Scholar 

  20. Iqbal M, Lin W, Jabbal-Gill I, Davis SS, Steward MW, Illum L . Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 2003; 21: 1478–1485.

    Article  CAS  PubMed  Google Scholar 

  21. Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP . Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm 2008; 354: 235–241.

    Article  CAS  PubMed  Google Scholar 

  22. Vila A, Sanchez A, Janes K, Behrens I, Kissel T, Vila Jato JL et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm 2004; 57: 123–131.

    Article  CAS  PubMed  Google Scholar 

  23. Chew JL, Wolfowicz CB, Mao HQ, Leong KW, Chua KY . Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice. Vaccine 2003; 21: 2720–2729.

    Article  CAS  PubMed  Google Scholar 

  24. Roy K, Mao HQ, Huang SK, Leong KW . Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999; 5: 387–391.

    Article  CAS  PubMed  Google Scholar 

  25. Ghendon Y, Markushin S, Krivtsov G, Akopova I . Chitosan as an adjuvant for parenterally administered inactivated influenza vaccines. Arch Virol 2008; 153: 831–837.

    Article  CAS  PubMed  Google Scholar 

  26. Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A et al. The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials 2005; 26: 2147–2156.

    Article  CAS  PubMed  Google Scholar 

  27. Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY . Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release 2005; 103: 235–243.

    Article  CAS  PubMed  Google Scholar 

  28. Issa MM, Koping-Hoggard M, Tommeraas K, Varum KM, Christensen BE, Strand SP et al. Targeted gene delivery with trisaccharide-substituted chitosan oligomers in vitro and after lung administration in vivo. J Control Release 2006; 115: 103–112.

    Article  CAS  PubMed  Google Scholar 

  29. Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Therapy 2001; 8: 1108–1121.

    Article  CAS  PubMed  Google Scholar 

  30. Koping-Hoggard M, Varum KM, Issa M, Danielsen S, Christensen BE, Stokke BT et al. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Therapy 2004; 11: 1441–1452.

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Yang WL, Li G, Qian J, Xue JL, Fu SK et al. Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles. World J Gastroenterol 2004; 10: 112–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de la Fuente M, Seijo B, Alonso MJ . Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Therapy 2008; 15: 668–676.

    Article  CAS  PubMed  Google Scholar 

  33. Nelea M, Lavertu M, MA PL, Buschman MD . Chitosan-plasmid DNA nanoparticle structure by ESEM and AFM depends on molecular weight and concentrations of plasmid and chitosan. (in preparation).

  34. Kang BC, Kang KS, Lee YS . Biocompatibility and long-term toxicity of InnoPol implant, a biodegradable polymer scaffold. Exp Anim 2005; 54: 37–52.

    Article  CAS  PubMed  Google Scholar 

  35. Bos GW, Kanellos T, Crommelin DJ, Hennink WE, Howard CR . Cationic polymers that enhance the performance of HbsAg DNA in vivo. Vaccine 2004; 23: 460–469.

    Article  CAS  PubMed  Google Scholar 

  36. Bramwell VW, Eyles JE, Somavarapu S, Alpar HO . Liposome/DNA complexes coated with biodegradable PLA improve immune responses to plasmid encoding hepatitis B surface antigen. Immunology 2002; 106: 412–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ma PL, Lavertu M, Winnik FM, Buschmann MD . New Insights into chitosan-DNA interactions using isothermal titration microcalorimetry. Biomolecules 2009; (in press).

  38. Southwood LL, Frisbie DD, Kawcak CE, McIlwraith CW . Delivery of growth factors using gene therapy to enhance bone healing. Vet Surg 2004; 33: 565–578.

    Article  PubMed  Google Scholar 

  39. Ota T, Maeda M, Tatsuka M . Cationic liposomes with plasmid DNA influence cancer metastatic capability. Anticancer Res 2002; 22: 4049–4052.

    CAS  PubMed  Google Scholar 

  40. Kaiser S, Toborek M . Liposome-mediated high-efficiency transfection of human endothelial cells. J Vasc Res 2001; 38: 133–143.

    Article  CAS  PubMed  Google Scholar 

  41. Langer R, Cleland JL, Hanes J . New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev 1997; 28: 97–119.

    Article  CAS  PubMed  Google Scholar 

  42. O′Hagan DT, Valiante NM . Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2003; 2: 727–735.

    Article  PubMed  PubMed Central  Google Scholar 

  43. O'Hagan DT, Singh M, Ulmer JB . Microparticles for the delivery of DNA vaccines. Immunol Rev 2004; 199: 191–200.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 2004; 103: 317–326.

    Article  CAS  PubMed  Google Scholar 

  45. Donnelly JJ, Liu MA, Ulmer JB . Antigen presentation and DNA vaccines. Am J Respir Crit Care Med 2000; 162: S190–S193.

    Article  CAS  PubMed  Google Scholar 

  46. Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, Chen YT et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol 1998; 160: 1320–1329.

    CAS  PubMed  Google Scholar 

  47. Schirmbeck R, Reimann J . Modulation of gene-gun-mediated Th2 immunity to hepatitis B surface antigen by bacterial CpG motifs or IL-12. Intervirology 2001; 44: 115–123.

    Article  CAS  PubMed  Google Scholar 

  48. Shedlock DJ, Weiner DB . DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 2000; 68: 793–806.

    CAS  PubMed  Google Scholar 

  49. Takashima A, Morita A . Dendritic cells in genetic immunization. J Leukoc Biol 1999; 66: 350–356.

    Article  CAS  PubMed  Google Scholar 

  50. Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165: 2850–2858.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang ZL, Reay D, Kreppel F, Gambotto A, Feingold E, Kochanek S et al. Local high-capacity adenovirus-mediated mCTLA4Ig and mCD40Ig expression prolongs recombinant gene expression in skeletal muscle. Mol Ther 2001; 3: 892–900.

    Article  CAS  PubMed  Google Scholar 

  52. Miller M, Rekas G, Dayball K, Wan YH, Bramson J . The efficacy of electroporated plasmid vaccines correlates with long-term antigen production in vivo. Vaccine 2004; 22: 2517–2523.

    Article  CAS  PubMed  Google Scholar 

  53. Varum KM, Holme HK, Izume M, Stokke BT, Smidsrod O . Determination of enzymatic hydrolysis specificity of partially N-acetylated chitosans. Biochim Biophys Acta 1996; 1291: 5–15.

    Article  PubMed  Google Scholar 

  54. Chou TC, Fu E, Shen EC . Chitosan inhibits prostaglandin E2 formation and cyclooxygenase-2 induction in lipopolysaccharide-treated RAW 264.7 macrophages. Biochem Biophys Res Commun 2003; 308: 403–407.

    Article  CAS  PubMed  Google Scholar 

  55. Huang M, Khor E, Lim LY . Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 2004; 21: 344–353.

    Article  CAS  PubMed  Google Scholar 

  56. Otterlei M, Varum KM, Ryan L, Espevik T . Characterization of binding and TNF-alpha-inducing ability of chitosans on monocytes: the involvement of CD14. Vaccine 1994; 12: 825–832.

    Article  CAS  PubMed  Google Scholar 

  57. Meyer KB, Thompson MM, Levy MY, Barron LG, Szoka Jr FC . Intratracheal gene delivery to the mouse airway: characterization of plasmid DNA expression and pharmacokinetics. Gene Therapy 1995; 2: 450–460.

    CAS  PubMed  Google Scholar 

  58. Tuomela M, Malm M, Wallen M, Stanescu I, Krohn K, Peterson P . Biodistribution and general safety of a naked DNA plasmid, GTU-MultiHIV, in a rat, using a quantitative PCR method. Vaccine 2005; 23: 890–896.

    Article  CAS  PubMed  Google Scholar 

  59. Nguyen S, Winnik F, Buschmann MD . Improved reproducibility in the determination of the molecular weight of chitosan by analytical size exclusion chromatography. Carbohydrate Polymers 2009; 75: 528–533.

    Article  CAS  Google Scholar 

  60. Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D et al. A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 2003; 32: 1149–1158.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (CIHR). The authors thank Liviu Dragomir, Viorica Lascau, Genevieve Picard for assistance with histological preparations and Dr Monica Nelea for ESEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Merzouki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean, M., Smaoui, F., Lavertu, M. et al. Chitosan–plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies. Gene Ther 16, 1097–1110 (2009). https://doi.org/10.1038/gt.2009.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.60

Keywords

This article is cited by

Search

Quick links