Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector

An Erratum to this article was published on 06 September 2012

Abstract

Expression of multiple genes from the same target cell is required in several technological and therapeutic applications such as quantitative measurements of promoter activity or in vivo tracking of stem cells. In spite of such need, reaching independent and high-level dual-gene expression cannot be reliably accomplished by current gene transfer vehicles. To address this issue, we designed a lentiviral vector carrying two transcriptional units separated by polyadenylation, terminator and insulator sequences. With this design, the expression level of both genes was as high as that yielded from lentiviral vectors containing only a single transcriptional unit. Similar results were observed with several promoters and cell types including epidermal keratinocytes, bone marrow mesenchymal stem cells and hair follicle stem cells. Notably, we demonstrated quantitative dynamic monitoring of gene expression in primary cells with no need for selection protocols suggesting that this optimized lentivirus may be useful in high-throughput gene expression profiling studies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Martinez-Salas E . Internal ribosome entry site biology and its use in expression vectors. Curr Opin Biotechnol 1999; 10: 458–464.

    Article  CAS  Google Scholar 

  2. Zhu Y, Feuer G, Day SL, Wrzesinski S, Planelles V . Multigene lentiviral vectors based on differential splicing and translational control. Mol Ther 2001; 4: 375–382.

    Article  CAS  Google Scholar 

  3. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF et al. Correction of multi-gene deficiency in vivo using a single ′self-cleaving′ 2A peptide-based retroviral vector. Nat Biotechnol 2004; 22: 589–594.

    Article  CAS  Google Scholar 

  4. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L . Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005; 23: 108–116.

    Article  CAS  Google Scholar 

  5. Wilson C, Bellen HJ, Gehring WJ . Position effects on eukaryotic gene expression. Annu Rev Cell Biol 1990; 6: 679–714.

    Article  CAS  Google Scholar 

  6. Villemure JF, Savard N, Belmaaza A . Promoter suppression in cultured mammalian cells can be blocked by the chicken beta-globin chromatin insulator 5′HS4 and matrix/scaffold attachment regions. J Mol Biol 2001; 312: 963–974.

    Article  CAS  Google Scholar 

  7. Milot E, Fraser P, Grosveld F . Position effects and genetic disease. Trends Genet 1996; 12: 123–126.

    Article  CAS  Google Scholar 

  8. Shearwin KE, Callen BP, Egan JB . Transcriptional interference–a crash course. Trends Genet 2005; 21: 339–345.

    Article  CAS  Google Scholar 

  9. Eszterhas SK, Bouhassira EE, Martin DI, Fiering S . Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 2002; 22: 469–479.

    Article  CAS  Google Scholar 

  10. Yu X, Zhan X, D′Costa J, Tanavde VM, Ye Z, Peng T et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther 2003; 7: 827–838.

    Article  CAS  Google Scholar 

  11. Pan H, Mostoslavsky G, Eruslanov E, Kotton DN, Kramnik I . Dual-promoter lentiviral system allows inducible expression of noxious proteins in macrophages. J Immunol Methods 2008; 329: 31–44.

    Article  CAS  Google Scholar 

  12. Osti D, Marras E, Ceriani I, Grassini G, Rubino T, Vigano D et al. Comparative analysis of molecular strategies attenuating positional effects in lentiviral vectors carrying multiple genes. J Virol Methods 2006; 136: 93–101.

    Article  CAS  Google Scholar 

  13. Bell AC, West AG, Felsenfeld G . Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 2001; 291: 447–450.

    Article  CAS  Google Scholar 

  14. Gaszner M, Felsenfeld G . Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 2006; 7: 703–713.

    Article  CAS  Google Scholar 

  15. Razin SV, Iarovaia OV, Sjakste N, Sjakste T, Bagdoniene L, Rynditch AV et al. Chromatin domains and regulation of transcription. J Mol Biol 2007; 369: 597–607.

    Article  CAS  Google Scholar 

  16. Liu JY, Peng HF, Andreadis ST . Contractile smooth muscle cells derived from hair-follicle stem cells. Cardiovasc Res 2008; 79: 24–33.

    Article  CAS  Google Scholar 

  17. Proudfoot NJ, Furger A, Dye MJ . Integrating mRNA processing with transcription. Cell 2002; 108: 501–512.

    Article  CAS  Google Scholar 

  18. Orozco IJ, Kim SJ, Martinson HG . The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J Biol Chem 2002; 277: 42899–42911.

    Article  CAS  Google Scholar 

  19. Yonaha M, Proudfoot NJ . Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol Cell 1999; 3: 593–600.

    Article  CAS  Google Scholar 

  20. Dye MJ, Proudfoot NJ . Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 2001; 105: 669–681.

    Article  CAS  Google Scholar 

  21. Gromak N, West S, Proudfoot NJ . Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 2006; 26: 3986–3996.

    Article  CAS  Google Scholar 

  22. Yoon YS, Jeong S, Rong Q, Park KY, Chung JH, Pfeifer K . Analysis of the H19ICR insulator. Mol Cell Biol 2007; 27: 3499–3510.

    Article  CAS  Google Scholar 

  23. Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D et al. Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 2007; 4: 747–753.

    Article  CAS  Google Scholar 

  24. Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA . High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 2003; 21: 111–117.

    Article  CAS  Google Scholar 

  25. Girod PA, Zahn-Zabal M, Mermod N . Use of the chicken lysozyme 5′ matrix attachment region to generate high producer CHO cell lines. Biotechnol Bioeng 2005; 91: 1–11.

    Article  CAS  Google Scholar 

  26. Aker M, Tubb J, Groth AC, Bukovsky AA, Bell AC, Felsenfeld G et al. Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum Gene Ther 2007; 18: 333–343.

    Article  CAS  Google Scholar 

  27. Yahata K, Maeshima K, Sone T, Ando T, Okabe M, Imamoto N et al. cHS4 insulator-mediated alleviation of promoter interference during cell-based expression of tandemly associated transgenes. J Mol Biol 2007; 374: 580–590.

    Article  CAS  Google Scholar 

  28. Ben-Dor I, Itsykson P, Goldenberg D, Galun E, Reubinoff BE . Lentiviral vectors harboring a dual-gene system allow high and homogeneous transgene expression in selected polyclonal human embryonic stem cells. Mol Ther 2006; 14: 255–267.

    Article  CAS  Google Scholar 

  29. Thompson DM, King KR, Wieder KJ, Toner M, Yarmush ML, Jayaraman A . Dynamic gene expression profiling using a microfabricated living cell array. Anal Chem 2004; 76: 4098–4103.

    Article  CAS  Google Scholar 

  30. King KR, Wang S, Irimia D, Jayaraman A, Toner M, Yarmush ML . A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 2007; 7: 77–85.

    Article  CAS  Google Scholar 

  31. Robert-Richard E, Richard E, Malik P, Ged C, de Verneuil H, Moreau-Gaudry F . Murine retroviral but not human cellular promoters induce in vivo erythroid-specific deregulation that can be partially prevented by insulators. Mol Ther 2007; 15: 173–182.

    Article  CAS  Google Scholar 

  32. ter Brake O, t Hooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B . Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008; 16: 557–564.

    Article  CAS  Google Scholar 

  33. Persons DA, Hargrove PW, Allay ER, Hanawa H, Nienhuis AW . The degree of phenotypic correction of murine beta-thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 2003; 101: 2175–2183.

    Article  CAS  Google Scholar 

  34. Chang AH, Stephan MT, Lisowski L, Sadelain M . Erythroid-specific human factor IX delivery from in vivo selected hematopoietic stem cells following nonmyeloablative conditioning in hemophilia B mice. Mol Ther 2008; 16: 1745–1752.

    Article  CAS  Google Scholar 

  35. Zheng XH, Hughes SH . An avian sarcoma/leukosis virus-based gene trap vector for mammalian cells. J Virol 1999; 73: 6946–6952.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G . A chromatin insulator protects retrovirus vectors from hromosomal position effects. Proc Natl Acad Sci USA 2000; 97: 9150–9155.

    Article  CAS  Google Scholar 

  37. Arumugam PI, Scholes J, Perelman N, Xia P, Yee JK, Malik P . Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol Ther 2007; 15: 1863–1871.

    Article  CAS  Google Scholar 

  38. Geer DJ, Swartz DD, Andreadis ST . Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am J Pathol 2005; 167: 1575–1586.

    Article  CAS  Google Scholar 

  39. Bajaj BG, Lei P, Andreadis ST . Efficient gene transfer to human epidermal keratinocytes on fibronectin: in vitro evidence for transduction of epidermal stem cells. Mol Ther 2005; 11: 969–979.

    Article  CAS  Google Scholar 

  40. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tiscornia G, Singer O, Verma IM . Production and purification of lentiviral vectors. Nat Protoc 2006; 1: 241–245.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01 EB000876-01, R01 HL086582) and the New York Stem Cell Science Funding Program (NYSTEM) to STA. We thank Dr Arul Jayaraman (Texas A&M University) for providing the plasmids containing the NF-κB and AP-1 response elements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Andreadis.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tian, J., Andreadis, S. Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector. Gene Ther 16, 874–884 (2009). https://doi.org/10.1038/gt.2009.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.46

Keywords

  • lentivirus
  • gene expression
  • promoter interference
  • tissue-specific promoter
  • dynamic measurement

This article is cited by

Search

Quick links