Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

HSV vector-mediated modification of primary nociceptor afferents: an approach to inhibit chronic pain

Abstract

Chronic pain is a serious medical condition with millions of sufferers for whom long-term therapies are either lacking or inadequate. Here we review the use of herpes simplex virus vectors as therapeutic tools to treat chronic pain by gene therapy. We describe an approach to inhibit chronic pain signaling whereby vector-mediated genes transferred to sensory nerves will modify the primary afferent nociceptor to prevent pain signaling to second-order nerves in the spinal cord. This approach may be used to reverse the chronic pain state of the nociceptor and could affect downstream pain-related changes in the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Niv D, Devor M . Chronic pain as a disease in its own right. Pain Pract 2004; 4: 179–181.

    Article  PubMed  Google Scholar 

  2. Dworkin RH, Gnann Jr JW, Oaklander AL, Raja SN, Schmader KE, Whitley RJ . Diagnosis and assessment of pain associated with herpes zoster and postherpetic neuralgia. J Pain 2008; 9: S37–S44.

    Article  PubMed  Google Scholar 

  3. Gold MS, Caterina MJ . Molecular biology of nociceptor transduction. In: Basbaum AI, Bushnell MC (eds). Handbook of the Senses, vol. 5. Academic Press: San Diego, 2008, pp 43–74.

    Google Scholar 

  4. Hansson P, Lacerenza M, Marchettini P . Aspects of clinical and experimental neuropathic pain: the clinical perspective. In: Hansson P, Fields HL, Hill RG, Marchettini P (eds). Neuropathic Pain: Pathophysiology and Treatment, vol. 21. IASP Press: Seattle, 2001, pp 1–18.

    Google Scholar 

  5. Barrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS . Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review. Pain Med 2007; 8 (Suppl 2): S50–S62.

    Article  PubMed  Google Scholar 

  6. Turk DC . Clinical effectiveness and cost-effectiveness of treatments for patients with chronic pain. Clin J Pain 2002; 18: 355–365.

    Article  PubMed  Google Scholar 

  7. Caterina MJ, Gold MS, Meyer RA . Molecular biology of nociceptors. In: Hunt S, Koltzenburg M, Hunt SP, Rothwell NJ (eds). The Neurobiology of Pain. Oxford University Press: Oxford, 2005, pp 1–33.

    Google Scholar 

  8. Braz J, Beaufour C, Coutaux A, Epstein AL, Cesselin F, Hamon M et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 2001; 21: 7881–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmelz M, Schmid R, Handwerker HO, Torebjork HE . Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain 2000; 123 (Part 3): 560–571.

    Article  PubMed  Google Scholar 

  10. Xing H, Chen M, Ling J, Tan W, Gu JG . TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 2007; 27: 13680–13690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gold MS, Chessell I, Devor M, Dray A, Gereau RW, Kane S et al. Peripheral nervous system targets: rapporteur report. In: Campbell JN, Basbaum AI, Dray A, Dubner R, Dworkin RH, Sang CN (eds). Emerging Strategies for the Treatment of Neuropathic Pain. IASP Press: Seattle, 2006, pp 3–36.

    Google Scholar 

  12. Dubner R . The neurobiology of persistent pain and its clinical implications. Suppl Clin Neurophysiol 2004; 57: 3–7.

    Article  PubMed  Google Scholar 

  13. Gracely RH, Lynch SA, Bennett GJ . Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain 1992; 51: 175–194.

    Article  CAS  PubMed  Google Scholar 

  14. Hill JM, Ball MJ, Neumann DM, Azcuy AM, Bhattacharjee PS, Bouhanik S et al. The high prevalence of herpes simplex virus type 1 DNA in human trigeminal ganglia is not a function of age or gender. J Virol 2008; 82: 8230–8234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobs A, Breakefield XO, Fraefel C . HSV-1-based vectors for gene therapy of neurological diseases and brain tumors: part I. HSV-1 structure, replication and pathogenesis. Neoplasia 1999; 1: 387–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goins WF, Wolfe D, Krisky DM, Bai Q, Burton EA, Fink DJ et al. Delivery using herpes simplex virus: an overview. Methods Mol Biol 2004; 246: 257–299.

    CAS  PubMed  Google Scholar 

  17. Chattopadhyay M, Goss J, Wolfe D, Goins WC, Huang S, Glorioso JC et al. Protective effect of herpes simplex virus-mediated neurotrophin gene transfer in cisplatin neuropathy. Brain 2004; 127: 929–939.

    Article  PubMed  Google Scholar 

  18. Burton EA, Wechuck JB, Wendell SK, Goins WF, Fink DJ, Glorioso JC . Multiple applications for replication-defective herpes simplex virus vectors. Stem Cells 2001; 19: 358–377.

    Article  CAS  PubMed  Google Scholar 

  19. DeLuca NA, McCarthy AM, Schaffer PA . Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 1985; 56: 558–570.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krisky DM, Wolfe D, Goins WF, Marconi PC, Ramakrishnan R, Mata M et al. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Therapy 1998; 5: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  21. Wolfe D, Goins WF, Yamada M, Moriuchi S, Krisky DM, Oligino TJ et al. Engineering herpes simplex virus vectors for CNS applications. Exp Neurol 1999; 159: 34–46.

    Article  CAS  PubMed  Google Scholar 

  22. Craft AM, Krisky DM, Wechuck JB, Lobenhofer EK, Jiang Y, Wolfe DP et al. HSV-mediated expression of Pax3 and MyoD in embryoid bodies results in lineage-related alterations in gene expression profiles. Stem Cells 2008; 26: 3119–3129.

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan KM, Brose WG . Intrathecal methods. Neurosurg Clin N Am 2004; 15: 289–296.

    Article  PubMed  Google Scholar 

  24. Antunes Bras JM, Epstein AL, Bourgoin S, Hamon M, Cesselin F, Pohl M . Herpes simplex virus 1-mediated transfer of preproenkephalin A in rat dorsal root ganglia. J Neurochem 1998; 70: 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  25. Wilson SP, Yeomans DC, Bender MA, Lu Y, Goins WF, Glorioso JC . Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proc Natl Acad Sci USA 1999; 96: 3211–3216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goss JR, Mata M, Goins WF, Wu HH, Glorioso JC, Fink DJ . Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Therapy 2001; 8: 551–556.

    Article  CAS  PubMed  Google Scholar 

  27. Hao S, Mata M, Goins W, Glorioso JC, Fink DJ . Transgene-mediated enkephalin release enhances the effect of morphine and evades tolerance to produce a sustained antiallodynic effect in neuropathic pain. Pain 2003; 102: 135–142.

    Article  CAS  PubMed  Google Scholar 

  28. Chuang YC, Yang LC, Chiang PH, Kang HY, Ma WL, Wu PC et al. Gene gun particle encoding preproenkephalin cDNA produces analgesia against capsaicin-induced bladder pain in rats. Urology 2005; 65: 804–810.

    Article  PubMed  Google Scholar 

  29. Lu Y, McNearney TA, Lin W, Wilson SP, Yeomans DC, Westlund KN . Treatment of inflamed pancreas with enkephalin encoding HSV-1 recombinant vector reduces inflammatory damage and behavioral sequelae. Mol Ther 2007; 15: 1812–1819.

    Article  CAS  PubMed  Google Scholar 

  30. Yeomans DC, Lu Y, Laurito CE, Peters MC, Vota-Vellis G, Wilson SP et al. Recombinant herpes vector-mediated analgesia in a primate model of hyperalgesia. Mol Ther 2006; 13: 589–597.

    Article  CAS  PubMed  Google Scholar 

  31. Wolfe D, Hao S, Hu J, Srinivasan R, Goss J, Mata M et al. Engineering an endomorphin-2 gene for use in neuropathic pain therapy. Pain 2007; 133: 29–38.

    Article  PubMed  Google Scholar 

  32. Hao S, Mata M, Wolfe D, Huang S, Glorioso JC, Fink DJ . Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann Neurol 2005; 57: 914–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Wolfe D, Hao S, Huang S, Glorioso JC, Mata M et al. Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther 2004; 10: 57–66.

    CAS  PubMed  Google Scholar 

  34. Poole S, Cunha FQ, Selkirk S, Lorenzetti BB, Ferreira SH . Cytokine-mediated inflammatory hyperalgesia limited by interleukin-10. Br J Pharmacol 1995; 115: 684–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cunha FQ, Poole S, Lorenzetti BB, Veiga FH, Ferreira SH . Cytokine-mediated inflammatory hyperalgesia limited by interleukin-4. Br J Pharmacol 1999; 126: 45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lorenzetti BB, Poole S, Veiga FH, Cunha FQ, Ferreira SH . Cytokine-mediated inflammatory hyperalgesia limited by interleukin-13. Eur Cytokine Netw 2001; 12: 260–267.

    CAS  PubMed  Google Scholar 

  37. Hao S, Mata M, Glorioso JC, Fink DJ . Gene transfer to interfere with TNFalpha signaling in neuropathic pain. Gene Therapy 2007; 14: 1010–1016.

    Article  CAS  PubMed  Google Scholar 

  38. Goss JR, Fetterfolf C, Goins W, Wolfe D, Huang S, Krisky D et al. Additive effects of HSV vectors expressing proenkephalin, interleukin-4, and tumor necrosis factor alpha soluble receptor to treat bone cancer pain. Mol Pain 2004; 9 (S1): 214.

    Google Scholar 

  39. Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P et al. The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain 2006; 7: S1–S29.

    Article  CAS  PubMed  Google Scholar 

  40. Waxman SG . Channel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype. Nat Neurosci 2007; 10: 405–409.

    Article  CAS  PubMed  Google Scholar 

  41. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006; 444: 894–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yeomans DC, Levinson SR, Peters MC, Koszowski AG, Tzabazis AZ, Gilly WF et al. Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Nav1.7 sodium channels in primary afferents. Hum Gene Ther 2005; 16: 271–277.

    Article  CAS  PubMed  Google Scholar 

  43. Goss JR, Zhang S, Qiao J, Galilei J, Krisky DM, Huang S et al. Engineered Zinc Finger Protein Transcription Factors as a Potential Therapy for Neuropathic Pain. 12th World Congress on Pain, Glasgow, Scotland, 2008.

  44. Venkatachalam K, Montell C . TRP channels. Annu Rev Biochem 2007; 76: 387–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Honore P, Wismer CT, Mikusa J, Zhu CZ, Zhong C, Gauvin DM et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther 2005; 314: 410–421.

    Article  CAS  PubMed  Google Scholar 

  46. Wong GY, Gavva NR . Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res Rev 2008; e-pub ahead of print 25 December 2008.

  47. Hucho T, Levine JD . Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 2007; 55: 365–376.

    Article  CAS  PubMed  Google Scholar 

  48. Numazaki M, Tominaga T, Toyooka H, Tominaga M . Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 2002; 277: 13375–13378.

    Article  CAS  PubMed  Google Scholar 

  49. Bhave G, Hu HJ, Glauner KS, Zhu W, Wang H, Brasier DJ et al. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci USA 2003; 100: 12480–12485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mandadi S, Tominaga T, Numazaki M, Murayama N, Saito N, Armati PJ et al. Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCepsilon-mediated phosphorylation at S800. Pain 2006; 123: 106–116.

    Article  CAS  PubMed  Google Scholar 

  51. Sculptoreanu A, de Groat WC, Buffington CA, Birder LA . Protein kinase C contributes to abnormal capsaicin responses in DRG neurons from cats with feline interstitial cystitis. Neurosci Lett 2005; 381: 42–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Srinivasan R, Wolfe D, Goss J, Watkins S, de Groat WC, Sculptoreanu A et al. Protein kinase C epsilon contributes to basal and sensitizing responses of TRPV1 to capsaicin in rat dorsal root ganglion neurons. Eur J Neurosci 2008; 28: 1241–1254.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Srinivasan R, Huang S, Chaudhry S, Sculptoreanu A, Krisky D, Cascio M et al. An HSV vector system for selection of ligand-gated ion channel modulators. Nat Methods 2007; 4: 733–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grandi P, Wang S, Schuback D, Krasnykh V, Spear M, Curiel DT et al. HSV-1 virions engineered for specific binding to cell surface receptors. Mol Ther 2004; 9: 419–427.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou G, Roizman B . Characterization of a recombinant herpes simplex virus 1 designed to enter cells via the IL13Ralpha2 receptor of malignant glioma cells. J Virol 2005; 79: 5272–5277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the substantial contributions of many collaborators in the work reviewed including David Fink, Marina Mata, Shuanglin Hao, Munmun Chattopadhyay, Zhigang Zhou and Xiangmin Peng (University of Michigan), Bill Goins, Paola Grandi, Justus Cohen, George Huang, Ali Ozuer, Mingdi Zhang, Rebecca Sullenberger, and Michael Cascio (University of Pittsburgh), Rahul Srinivasin (Cal Tech), April Craft (University of Toronto) and Darren Wolfe, James Wechuck and David Krisky (Diamyd Inc., Pittsburgh, PA). Work described in this review from our laboratories was supported by the following grants: JRG (NIH:DK07402604), MG (NIH:NS044992-02) and JCG (NIH:2PO1NS040923:RO1119298:U54AR050733;PO1DK044935: RO1 NS059003: PO1 CA06924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Glorioso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goss, J., Gold, M. & Glorioso, J. HSV vector-mediated modification of primary nociceptor afferents: an approach to inhibit chronic pain. Gene Ther 16, 493–501 (2009). https://doi.org/10.1038/gt.2009.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.24

Keywords

This article is cited by

Search

Quick links