Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Lentiviral vectors for gene transfer into the spinal cord glial cells

Abstract

Activated glial cells in the dorsal spinal cord participate in the development and maintenance of pain after peripheral nerve injury. Our understanding of mechanisms involved in functional changes of spinal glia remains incomplete. Excepting drugs that completely disrupt glial function, pharmacological studies fail to target glia and to modify locally its function to really discriminate the function of neuronal versus glial cells in chronic pain. Lentivirus-derived vectors fulfill several criteria that make them potentially interesting for this preferential targeting of glial cells in the spinal cord. We showed that in vivo single microdelivery of vesicular stomatitis virus G pseudotyped lentiviral vectors into the rat dorsal spinal cord led to a highly preferential expression of transgenes in astrocytes and microglial cells. This local and glia-targeted intervention allowed, for instance, the blockade of intracellular nuclear factor κB signaling pathway leading then to downregulation of the enhanced expression of several markers related to inflammation and pain, and, finally, to prolonged antihyperalgesic and antiallodynic effects. Targeted modulation of the expression of gene of interest in glial cells, closely restricted to a particular region of the spinal cord, may thus represent an interesting approach to refine the understanding of mechanisms by which spinal glial cells participate in pain processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Marchand F, Perretti M, McMahon SB . Role of the immune system in chronic pain. Nat Rev Neurosci 2005; 6: 521–532.

    Article  CAS  PubMed  Google Scholar 

  2. Scholz J, Woolf CJ . The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007; 10: 1361–1368.

    Article  CAS  PubMed  Google Scholar 

  3. Tsuda M, Inoue K, Salter MW . Neuropathic pain and spinal microglia: a big problem from molecules in ‘small’ glia. Trends Neurosci 2005; 28: 101–107.

    Article  CAS  PubMed  Google Scholar 

  4. Watkins LR, Milligan ED, Maier SF . Glial activation: a driving force for pathological pain. Trends Neurosci 2001; 24: 450–455.

    Article  CAS  PubMed  Google Scholar 

  5. Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR et al. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 2007; 203: 42–54.

    Article  CAS  PubMed  Google Scholar 

  6. Detloff MR, Fisher LC, McGaughy V, Longbrake EE, Popovich PG, Basso DM . Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp Neurol 2008; 212: 337–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuzumaki N, Narita M, Narita M, Hareyama N, Niikura K, Nagumo Y et al. Chronic pain-induced astrocyte activation in the cingulate cortex with no change in neural or glial differentiation from neural stem cells in mice. Neurosci Lett 2007; 415: 22–27.

    Article  CAS  PubMed  Google Scholar 

  8. Jin SX, Zhuang ZY, Woolf CJ, Ji RR . p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 2003; 23: 4017–4022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci 2006; 26: 3551–3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhuang ZY, Gerner P, Woolf CJ, Ji RR . ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 2005; 114: 149–159.

    Article  PubMed  Google Scholar 

  11. Luo MC, Zhang DQ, Ma SW, Huang YY, Shuster SJ, Porreca F et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 2005; 1: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H et al. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci 2004; 24: 10211–10222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, Spataro L et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 2005; 1: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Storek B, Harder NM, Banck MS, Wang C, McCart DM, Janssen WG et al. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rat. Mol Pain 2006; 2: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Storek B, Reinhardt M, Wang C, Janssen WG, Harder NM, Banck MS et al. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci USA 2008; 105: 1055–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schubert M, Breakefield X, Federoff H, Frederickson M, Lowenstein PR . Gene delivery to the nervous system. Mol Ther 2008; 16: 640–646.

    Article  CAS  PubMed  Google Scholar 

  17. Naldini L, Blomer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  PubMed  Google Scholar 

  19. Abordo-Adesida E, Follenzi A, Barcia C, Sciascia S, Castro M, Naldini L et al. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther 2005; 16: 741–751.

    Article  CAS  PubMed  Google Scholar 

  20. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH . Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 2002; 5: 528–537.

    Article  CAS  PubMed  Google Scholar 

  21. Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA et al. Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol Ther 2004; 9: 101–111.

    Article  CAS  PubMed  Google Scholar 

  22. Desmaris N, Bosch A, Salaün C, Petit C, Prévost MC, Tordo N et al. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 2001; 4: 149–156.

    Article  CAS  PubMed  Google Scholar 

  23. Steffens S, Tebbets J, Kramm CM, Lindemann D, Flake A, Sena-Esteves M . Transduction of human glial and neuronal tumor cells with different lentivirus vector pseudotypes. J Neurooncol 2004; 70: 281–288.

    Article  PubMed  Google Scholar 

  24. Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD et al. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River virus glycoproteins. J Virol 2002; 76: 9378–9388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C et al. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci USA 2006; 103: 17684–17689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  PubMed  Google Scholar 

  27. Delenda C . Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 2004; 6 (Suppl 1): S125–S138.

    Article  CAS  PubMed  Google Scholar 

  28. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH . Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yee JK, Friedmann T, Burns JC . Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 1994; 43: 99–112.

    Article  CAS  PubMed  Google Scholar 

  30. Zennou V, Serguera C, Sarkis C, Colin P, Perret E, Mallet J et al. The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat Biotechnol 2001; 19: 446–450.

    Article  CAS  PubMed  Google Scholar 

  31. Baekelandt V, Claeys A, Eggermont K, Lauwers E, De Strooper B, Nuttin B et al. Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther 2002; 13: 841–853.

    Article  CAS  PubMed  Google Scholar 

  32. Pezet S, Krzyzanovska A, Wong LF, Grist J, Mazarkis ND, Georgievska B et al. Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF. Mol Ther 2006; 13: 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  33. Hendriks WT, Eggers R, Verhaagen J, Boer GJ . Gene transfer to the spinal cord neural scar with lentiviral vectors: predominant transgene expression in astrocytes but not in meningeal cells. J Neurosci Res 2007; 85: 3041–3052.

    Article  CAS  PubMed  Google Scholar 

  34. Meunier A, Mauborgne A, Masson J, Mallet J, Pohl M . Lentiviral-mediated targeted transgene expression in dorsal spinal cord glia: tool for the study of glial cell implication in mechanisms underlying chronic pain development. J Neurosci Methods 2008; 167: 148–159.

    Article  CAS  PubMed  Google Scholar 

  35. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M . Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 1995; 270: 286–290.

    Article  CAS  PubMed  Google Scholar 

  36. Yin MJ, Yamamoto Y, Gaynor RB . The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 1998; 396: 77–80.

    Article  CAS  PubMed  Google Scholar 

  37. Makarov SS . NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today 2000; 6: 441–448.

    Article  CAS  PubMed  Google Scholar 

  38. Suter MR, Wen YR, Decosterd I, Ji RR . Do glial cells control pain? Neuron Glia Biol 2007; 3: 255–268.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ledeboer A, Gamanos M, Lai W, Martin D, Maier SF, Watkins LR et al. Involvement of spinal cord nuclear factor kappaB activation in rat models of proinflammatory cytokine-mediated pain facilitation. Eur J Neurosci 2005; 22: 1977–1986.

    Article  PubMed  Google Scholar 

  40. Tegeder I, Niederberger E, Schmidt R, Kunz S, Guhring H, Ritzeler O et al. Specific Inhibition of IkappaB kinase reduces hyperalgesia in inflammatory and neuropathic pain models in rats. J Neurosci 2004; 24: 1637–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ . Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002; 22: 6724–6731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bennett GJ, Xie YK . A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33: 87–107.

    Article  CAS  PubMed  Google Scholar 

  43. Lee HL, Lee KM, Son SJ, Hwang SH, Cho HJ . Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model. Neuroreport 2004; 15: 2807–2811.

    CAS  PubMed  Google Scholar 

  44. Latrémolière A, Mauborgne A, Masson J, Bourgoin S, Kayser V, Hamon M et al. Differential implication of proinflammatory cytokine interleukin-6 in the development of cephalic versus extracephalic neuropathic pain in rats. J Neurosci 2008; 28: 8489–8501.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meunier A, Latrémolière A, Dominguez E, Mauborgne A, Mallet J, Phillipe S et al. Lentiviral-mediated targeted NF-kB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced hyperalgesia in rat. Mol Ther 2007; 15: 687–697.

    Article  CAS  PubMed  Google Scholar 

  46. Liu B, Wang S, Brenner M, Paton JF, Kasparov S . Enhancement of cell-specific transgene expression from a Tet-Off regulatory system using a transcriptional amplification strategy in the rat brain. J Gene Med 2008; 10: 583–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hurttila H, Koponen JK, Kansanen E, Jyrkkänen HK, Kivelä A, Kylätie R et al. Oxidative stress-inducible lentiviral vectors for gene therapy. Gene Therapy 2008; 15: 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  48. Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC . Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol 2006; 198: 382–390.

    Article  CAS  PubMed  Google Scholar 

  49. Szulc J, Aebischer P . Conditional gene expression and knockdown using lentivirus vectors encoding shRNA. Methods Mol Biol 2008; 434: 291–309.

    CAS  PubMed  Google Scholar 

  50. Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP et al. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 2004; 5: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Milligan ED, Zapata V, Chacur M, Schoeniger D, Biedenkapp J, O’Connor KA et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 2004; 20: 2294–2302.

    Article  CAS  PubMed  Google Scholar 

  52. Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS, Foster AC . Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 2004; 20: 1150–1160.

    Article  PubMed  Google Scholar 

  53. Holmes FE, Arnott N, Vanderplank P, Kerr NC, Longbrake EE, Popovich PG et al. Intra-neural administration of fractalkine attenuates neuropathic pain-related behaviour. J Neurochem 2008; 106: 640–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Pohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meunier, A., Pohl, M. Lentiviral vectors for gene transfer into the spinal cord glial cells. Gene Ther 16, 476–482 (2009). https://doi.org/10.1038/gt.2009.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.22

Keywords

This article is cited by

Search

Quick links