Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression

Abstract

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly increased cardiac expression of VEGF compared with injection of plasmid alone. This is the first report showing successful intracardiac delivery, through in vivo EP, of a protein expressing plasmid in a large animal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG . Direct myocardial revascularization and angiogenesis—how many patients might be eligible? Am J Cardiol 1999; 84: 598–600; A598.

    Article  CAS  Google Scholar 

  2. Brewster L, Brey EM, Greisler HP . Cardiovascular gene delivery: the good road is awaiting. Adv Drug Deliv Rev 2006; 58: 604–629.

    Article  CAS  Google Scholar 

  3. Fortuin FD, Vale P, Losordo DW, Symes J, DeLaria GA, Tyner JJ et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am J Cardiol 2003; 92: 436–439.

    Article  CAS  Google Scholar 

  4. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002; 105: 1291–1297.

    Article  CAS  Google Scholar 

  5. Sarkar N, Ruck A, Kallner G, Y-Hassan S, Blomberg P, Islam KB et al. Effects of intramyocardial injection of phVEGF-A165 as sole therapy in patients with refractory coronary artery disease–12-month follow-up: angiogenic gene therapy. J Intern Med 2001; 250: 373–381.

    Article  Google Scholar 

  6. Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Therapy 2006; 13: 1503–1511.

    Article  Google Scholar 

  7. Dean DA . Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am J Physiol Cell Physiol 2005; 289: C233–C245.

    Article  CAS  Google Scholar 

  8. Schalch P, Rahman GF, Patejunas G, Goldschmidt RA, Carbray J, Retuerto MA et al. Adenoviral-mediated transfer of vascular endothelial growth factor 121 cDNA enhances myocardial perfusion and exercise performance in the nonischemic state. J Thorac Cardiovasc Surg 2004; 127: 535–540.

    Article  Google Scholar 

  9. Herweijer H, Wolff JA . Progress and prospects: naked DNA gene transfer and therapy. Gene Therapy 2003; 10: 453–458.

    Article  CAS  Google Scholar 

  10. Niidome T, Huang L . Gene therapy progress and prospects: nonviral vectors. Gene Therapy 2002; 9: 1647–1652.

    Article  CAS  Google Scholar 

  11. Nishikawa M, Huang L . Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 2001; 12: 861–870.

    Article  CAS  Google Scholar 

  12. Wells DJ . Gene therapy progress and prospects: electroporation and other physical methods. Gene Therapy 2004; 11: 1363–1369.

    Article  CAS  Google Scholar 

  13. Caplen NJ, Alton EW, Middleton PG, Dorin JR, Stevenson BJ, Gao X et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1995; 1: 39–46.

    Article  CAS  Google Scholar 

  14. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417.

    Article  CAS  Google Scholar 

  15. Nicolau C, Sene C . Liposome-mediated DNA transfer in eukaryotic cells. Dependence of the transfer efficiency upon the type of liposomes used and the host cell cycle stage. Biochim Biophys Acta 1982; 721: 185–190.

    Article  CAS  Google Scholar 

  16. Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL . DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 1993; 90: 11478–11482.

    Article  CAS  Google Scholar 

  17. Sun WH, Burkholder JK, Sun J, Culp J, Turner J, Lu XG et al. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci USA 1995; 92: 2889–2893.

    Article  CAS  Google Scholar 

  18. Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D . In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990; 87: 9568–9572.

    Article  CAS  Google Scholar 

  19. Liu D, Knapp JE . Hydrodynamics-based gene delivery. Curr Opin Mol Ther 2001; 3: 192–197.

    CAS  PubMed  Google Scholar 

  20. Liu F, Song Y, Liu D . Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Therapy 1999; 6: 1258–1266.

    Article  CAS  Google Scholar 

  21. Mir LM . Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry (Amsterdam, The Netherlands) 2001; 53: 1–10.

    Article  CAS  Google Scholar 

  22. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    Article  CAS  Google Scholar 

  23. Glasspool-Malone J, Somiari S, Drabick JJ, Malone RW . Efficient nonviral cutaneous transfection. Mol Ther 2000; 2: 140–146.

    Article  CAS  Google Scholar 

  24. Heller LC, Heller R . In vivo electroporation for gene therapy. Hum Gene Ther 2006; 17: 890–897.

    Article  CAS  Google Scholar 

  25. Lucas ML, Heller R . Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle. Mol Ther 2001; 3: 47–53.

    Article  CAS  Google Scholar 

  26. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK et al. Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma. J Clin Oncol 2008; 26: 5896–5903.

    Article  CAS  Google Scholar 

  27. Low L, Mander A, McCann KJ, Dearnaley D, Tjelle TE, Mathiesen I et al. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 2009; 20: 1269–1278.

    Article  CAS  Google Scholar 

  28. Harrison RL, Byrne BJ, Tung L . Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett 1998; 435: 1–5.

    Article  CAS  Google Scholar 

  29. Thompson JF, Hayes LS, Lloyd DB . Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 1991; 103: 171–177.

    Article  CAS  Google Scholar 

  30. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu L-Q, Bunting S et al. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994; 93: 662–670.

    Article  CAS  Google Scholar 

  31. Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou A et al. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 1996; 94: 1074–1082.

    Article  CAS  Google Scholar 

  32. Hojman P, Gissel H, Andre FM, Cournil-Henrionnet C, Eriksen J, Gehl J et al. Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther 2008; 19: 1249–1260.

    Article  CAS  Google Scholar 

  33. Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Ruzyllo W et al. Direct intramyocardial plasmid vascular endothelial growth factor-a165 gene therapy in patients with stable severe angina pectoris. J Am Coll Cardiol 2005; 45: 982–988.

    Article  CAS  Google Scholar 

  34. Gaffney MM, Hynes SO, Barry F, O’Brien T . Cardiovascular gene therapy: current status and therapeutic potential. Br J Pharmacol 2007; 152: 175–188.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant from the National Institutes of Health R21 HL089017 and by the University of South Florida College of Medicine, Florida Center of Excellence for Biomolecular Identification and Targeted Therapeutics and Cook Medical, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Heller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, W., Boone, B., Burgos, J. et al. Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression. Gene Ther 17, 419–423 (2010). https://doi.org/10.1038/gt.2009.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.153

Keywords

This article is cited by

Search

Quick links