Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dual transgene expression by foamy virus vectors carrying an endogenous bidirectional promoter

Abstract

Several gene therapy applications require the transfer and simultaneous expression of multiple genes in the same cell. In this study, we analyzed the potential for coordinated expression of an endogenous bidirectional promoter located on chromosome X, which controls the expression of the heterogeneous nuclear ribonucleoprotein H2 (HNRNPH2) and alpha-galactosidase (GLA) genes. The promoter was cloned in both transcriptional orientations in a foamy virus (FV) vector backbone, whereas the enhanced green fluorescent protein (EGFP) and low-affinity nerve growth factor receptor (ΔLNGFR) reporter genes were cloned in the 5′–3′ and 3′–5′ transcriptional orientations, respectively. In all the cell lines tested, both vectors showed high levels of transgene coexpression that reached 76% of total positive cells (range from 76 to 18%). Comparison of EGFP and ΔNGFR levels revealed that the side of the promoter that drives the expression of the HNRNPH2 gene in the genome was stronger and in accordance to its in situ activity. When tested with CD34+ cells, transgene coexpression reached 35.3% of all positive cells in progenitor assays and 16.8% of all positive cells after transplantation in NOD/severe combined immunodeficient mice. In summary, we show that the endogenous promoter used in this study holds bidirectional activity in the context of FV vectors and can be used in gene therapy applications requiring synchronized expression of two genes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Sawai N, Zhou S, Vanin EF, Houghton P, Brent TP, Sorrentino BP . Protection and in vivo selection of hematopoietic stem cells using temozolomide, O6-benzylguanine, and an alkyltransferase-expressing retroviral vector. Mol Ther 2001; 3: 78–87.

    Article  CAS  PubMed  Google Scholar 

  2. Gerull S, Beard BC, Peterson LJ, Neff T, Kiem HP . In vivo selection and chemoprotection after drug resistance gene therapy in a nonmyeloablative allogeneic transplantation setting in dogs. Hum Gene Ther 2007; 18: 451–456.

    Article  CAS  Google Scholar 

  3. Chinnasamy D, Milsom MD, Shaffer J, Neuenfeldt J, Shaaban AF, Margison GP et al. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol J 2006; 3: 14.

    Article  PubMed  Google Scholar 

  4. Cai S, Ernstberger A, Wang H, Bailey BJ, Hartwell JR, Sinn AL et al. In vivo selection of hematopoietic stem cells transduced at a low multiplicity-of-infection with a foamy viral MGMT(P140K) vector. Exp Hematol 2008; 36: 283–292.

    Article  CAS  PubMed  Google Scholar 

  5. Persons DA, Allay ER, Sawai N, Hargrove PW, Brent TP, Hanawa H et al. Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood 2003; 102: 506–513.

    Article  CAS  PubMed  Google Scholar 

  6. Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T . IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 2000; 1: 376–382.

    Article  CAS  PubMed  Google Scholar 

  7. Hennecke M, Kwissa M, Metzger K, Oumard A, Kroger A, Schirmbeck R et al. Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucleic Acids Res 2001; 29: 3327–3334.

    Article  CAS  PubMed  Google Scholar 

  8. Kozak M . Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 2003; 318: 1–23.

    Article  CAS  PubMed  Google Scholar 

  9. Emerman M, Temin HM . Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 1984; 39: 449–467.

    Article  CAS  PubMed  Google Scholar 

  10. Eszterhas SK, Bouhassira EE, Martin DI, Fiering S . Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 2002; 22: 469–479.

    Article  CAS  PubMed  Google Scholar 

  11. Yu X, Zhan X, D’Costa J, Tanavde VM, Ye Z, Peng T et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther 2003; 7: 827–838.

    Article  CAS  PubMed  Google Scholar 

  12. Curtin JA, Dane AP, Swanson A, Alexander IE, Ginn SL . Bidirectional promoter interference between two widely used internal heterologous promoters in a late-generation lentiviral construct. Gene Therapy 2008; 15: 384–390.

    Article  CAS  Google Scholar 

  13. Ryan MD, Drew J . Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 1994; 13: 928–933.

    Article  CAS  PubMed  Google Scholar 

  14. Furler S, Paterna JC, Weibel M, Bueler H . Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons. Gene Therapy 2001; 8: 864–873.

    Article  CAS  Google Scholar 

  15. de Felipe P . Skipping the co-expression problem: the new 2A ‘CHYSEL’ technology. Genet Vaccines Ther 2004; 2: 13.

    Article  PubMed  Google Scholar 

  16. de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C, Ryan MD . E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotechnol 2006; 24: 68–75.

    Article  CAS  Google Scholar 

  17. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L . Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005; 23: 108–116.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 2007; 110: 1448–1457.

    Article  CAS  PubMed  Google Scholar 

  19. Adachi N, Lieber MR . Bidirectional gene organization: a common architectural feature of the human genome. Cell 2002; 109: 807–809.

    Article  CAS  Google Scholar 

  20. Takai D, Jones PA . Origins of bidirectional promoters: computational analyses of intergenic distance in the human genome. Mol Biol Evol 2004; 21: 463–467.

    Article  CAS  Google Scholar 

  21. Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM . An abundance of bidirectional promoters in the human genome. Genome Res 2004; 14: 62–66.

    Article  CAS  PubMed  Google Scholar 

  22. Guarguaglini G, Battistoni A, Pittoggi C, Di Matteo G, Di Fiore B, Lavia P . Expression of the murine RanBP1 and Htf9-c genes is regulated from a shared bidirectional promoter during cell cycle progression. Biochem J 1997; 325 (Part 1): 277–286.

    Article  CAS  PubMed  Google Scholar 

  23. Ahn J, Gruen JR . The genomic organization of the histone clusters on human 6p213. Mamm Genome 1999; 10: 768–770.

    Article  CAS  PubMed  Google Scholar 

  24. Hansen JJ, Bross P, Westergaard M, Nielsen MN, Eiberg H, Borglum AD et al. Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 2003; 112: 71–77.

    Article  CAS  PubMed  Google Scholar 

  25. Greene WK, Sontani Y, Sharp MA, Dunn DS, Kees UR, Bellgard MI . A promoter with bidirectional activity is located between TLX1/HOX11 and a divergently transcribed novel human gene. Gene 2007; 391: 223–232.

    Article  CAS  PubMed  Google Scholar 

  26. Yang MQ, Elnitski LL . Prediction-based approaches to characterize bidirectional promoters in the mammalian genome. BMC Genomics 2008; 9 (Suppl 1): S2.

    Article  PubMed  Google Scholar 

  27. Hung CF, Cheng TL, Wu RH, Teng CF, Chang WT . A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells. Biochem Biophys Res Commun 2006; 339: 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  28. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  29. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    Article  CAS  PubMed  Google Scholar 

  30. Josephson NC, Vassilopoulos G, Trobridge GD, Priestley GV, Wood BL, Papayannopoulou T et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci USA 2002; 99: 8295–8300.

    Article  CAS  PubMed  Google Scholar 

  31. Vassilopoulos G, Trobridge G, Josephson NC, Russell DW . Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 2001; 98: 604–609.

    Article  CAS  PubMed  Google Scholar 

  32. Trobridge G, Russell DW . Cell cycle requirements for transduction by foamy virus vectors compared to those of oncovirus and lentivirus vectors. J Virol 2004; 78: 2327–2335.

    Article  CAS  PubMed  Google Scholar 

  33. Hendrie PC, Huo Y, Stolitenko RB, Russell DW . A rapid and quantitative assay for measuring neighboring gene activation by vector proviruses. Mol Ther 2008; 16: 534–540.

    Article  CAS  PubMed  Google Scholar 

  34. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  35. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  36. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R et al. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 2006; 103: 1498–1503.

    Article  CAS  PubMed  Google Scholar 

  37. Gil A, Proudfoot NJ . Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell 1987; 49: 399–406.

    Article  CAS  Google Scholar 

  38. Vassilopoulos G, Josephson NC, Trobridge G . Development of foamy virus vectors. Methods Mol Med 2003; 76: 545–564.

    CAS  Google Scholar 

  39. Siapati EK, Bigger BW, Miskin J, Chipchase D, Parsley KL, Mitrophanous K et al. Comparison of HIV- and EIAV-based vectors on their efficiency in transducing murine and human hematopoietic repopulating cells. Mol Ther 2005; 12: 537–546.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European IP CONSERT (FP6, 005242) and an ENTER Grant to ES (GSRT, Number 04ER022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Vassilopoulos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andrianaki, A., Siapati, E., Hirata, R. et al. Dual transgene expression by foamy virus vectors carrying an endogenous bidirectional promoter. Gene Ther 17, 380–388 (2010). https://doi.org/10.1038/gt.2009.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.147

Keywords

  • FV
  • bidirectional promoter
  • gene transfer
  • hematopoietic stem cells

This article is cited by

Search

Quick links