Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors

Abstract

Bidirectional lentiviral vectors mediate expression of two or more cDNAs from a single internal promoter. In this study, we examined mechanisms that control titer and expression properties of this vector system. To address whether the bidirectional design depends on lentiviral (LV) backbone components, especially the Rev/Rev responsive element (RRE) system, we constructed similar expression cassettes for LV and gammaretroviral (GV) vectors. Bidirectional expression levels could be adjusted by the use of different internal promoters. Furthermore, removal of the constitutive RNA transport element of Mason-Pfizer monkey virus, used in first generation bidirectional LV vectors, improved gene expression. Titers of bidirectional vectors were 10-fold reduced in comparison to unidirectional vectors, independent of the Rev/RRE interaction. We reasoned that titer reductions were due to the formation of interfering double-stranded RNA in packaging cells. Indeed, cotransfection of Nodamuravirus B2 protein, an RNA interference suppressor, increased bidirectional vector titers at least fivefold. We validated the potential of high titer bidirectional vectors by coexpressing a fluorescent marker with O6-methylguanine-DNA methyltransferase from integrating, or with Cre recombinase from integrating and non-integrating GV and LV backbones. This allowed for the tracking of chemoprotected and recombined cells by fluorescence marker expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  Google Scholar 

  2. Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    Article  CAS  Google Scholar 

  3. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  Google Scholar 

  4. Levine BL, Humeau LM, Boyer J, MacGregor RR, Rebello T, Lu X et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006; 103: 17372–17377.

    Article  CAS  Google Scholar 

  5. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  Google Scholar 

  6. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G . iPS cell generation using a single lentiviral stem cell cassette. Stem Cells 2009; 27: 543–549.

    Article  CAS  Google Scholar 

  7. de Felipe P . Polycistronic viral vectors. Curr Gene Ther 2002; 2: 355–378.

    Article  CAS  Google Scholar 

  8. Borman AM, Le Mercier P, Girard M, Kean KM . Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 1997; 25: 925–932.

    Article  CAS  Google Scholar 

  9. Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T . IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 2000; 1: 376–382.

    Article  CAS  Google Scholar 

  10. Kaufman RJ, Davies MV, Wasley LC, Michnick D . Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res 1991; 19: 4485–4490.

    Article  CAS  Google Scholar 

  11. Proudfoot NJ . Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature 1986; 322: 562–565.

    Article  CAS  Google Scholar 

  12. Greger IH, Demarchi F, Giacca M, Proudfoot NJ . Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Res 1998; 26: 1294–1301.

    Article  CAS  Google Scholar 

  13. Baron U, Freundlieb S, Gossen M, Bujard H . Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 1995; 23: 3605–3606.

    Article  CAS  Google Scholar 

  14. Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L . Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005; 23: 108–116.

    Article  CAS  Google Scholar 

  15. Gantier MP, Williams BR . The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 2007; 18: 363–371.

    Article  CAS  Google Scholar 

  16. Sen GC, Peters GA . Viral stress-inducible genes. Adv Virus Res 2007; 70: 233–263.

    Article  CAS  Google Scholar 

  17. Kitajewski J, Schneider RJ, Safer B, Munemitsu SM, Samuel CE, Thimmappaya B et al. Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell 1986; 45: 195–200.

    Article  CAS  Google Scholar 

  18. Thomis DC, Samuel CE . Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J Virol 1993; 67: 7695–7700.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang S, Tutton S, Pierce E, Yoon K . Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol 2001; 21: 7807–7816.

    Article  CAS  Google Scholar 

  20. Ding SW, Voinnet O . Antiviral immunity directed by small RNAs. Cell 2007; 130: 413–426.

    Article  CAS  Google Scholar 

  21. Sullivan CS, Ganem D . A virus-encoded inhibitor that blocks RNA interference in mammalian cells. J Virol 2005; 79: 7371–7379.

    Article  CAS  Google Scholar 

  22. Lu S, Cullen BR . Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 2004; 78: 12868–12876.

    Article  CAS  Google Scholar 

  23. Pernod G, Fish R, Liu JW, Kruithof EK . Increasing lentiviral vector titer using inhibitors of protein kinase R. Biotechniques 2004; 36: 576–578; 580.

    Article  CAS  Google Scholar 

  24. Zhang Z, Carmichael GG . The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 2001; 106: 465–475.

    Article  CAS  Google Scholar 

  25. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR . The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 1989; 338: 254–257.

    Article  CAS  Google Scholar 

  26. Bogerd HP, Echarri A, Ross TM, Cullen BR . Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to Crm1. J Virol 1998; 72: 8627–8635.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, Pavlakis GN . rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci USA 1989; 86: 1495–1499.

    Article  CAS  Google Scholar 

  28. Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1998; 1: 649–659.

    Article  CAS  Google Scholar 

  29. Yu SS, Dan K, Chono H, Chatani E, Mineno J, Kato I . Transient gene expression mediated by integrase-defective retroviral vectors. Biochem Biophys Res Commun 2008; 368: 942–947.

    Article  CAS  Google Scholar 

  30. Apolonia L, Waddington SN, Fernandes C, Ward NJ, Bouma G, Blundell MP et al. Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 2007; 15: 1947–1954.

    Article  CAS  Google Scholar 

  31. Tervo HM, Goffinet C, Keppler OT . Mouse T-cells restrict replication of human immunodeficiency virus at the level of integration. Retrovirology 2008; 5: 58.

    Article  Google Scholar 

  32. Hatziioannou T, Cowan S, Bieniasz PD . Capsid-dependent and -independent postentry restriction of primate lentivirus tropism in rodent cells. J Virol 2004; 78: 1006–1011.

    Article  CAS  Google Scholar 

  33. Fehse B, Kustikova OS, Bubenheim M, Baum C . Pois(s)on—it's a question of dose? Gene Therapy 2004; 11: 879–881.

    Article  CAS  Google Scholar 

  34. Ji HB, Gupta A, Okamoto S, Blum MD, Tan L, Goldring MB et al. T cell-specific expression of the murine CD3delta promoter. J Biol Chem 2002; 277: 47898–47906.

    Article  CAS  Google Scholar 

  35. Schambach A, Mueller D, Galla M, Verstegen MM, Wagemaker G, Loew R et al. Overcoming promoter competition in packaging cells improves production of self-inactivating retroviral vectors. Gene Therapy 2006; 13: 1524–1533.

    Article  CAS  Google Scholar 

  36. Bennasser Y, Le SY, Benkirane M, Jeang KT . Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005; 22: 607–619.

    Article  CAS  Google Scholar 

  37. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C et al. A cellular microRNA mediates antiviral defense in human cells. Science 2005; 308: 557–560.

    Article  CAS  Google Scholar 

  38. Voinnet O, Pinto YM, Baulcombe DC . Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 1999; 96: 14147–14152.

    Article  CAS  Google Scholar 

  39. Fenner BJ, Thiagarajan R, Chua HK, Kwang J . Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 2006; 80: 85–94.

    Article  CAS  Google Scholar 

  40. Johnson KL, Price BD, Eckerle LD, Ball LA . Nodamura virus nonstructural protein B2 can enhance viral RNA accumulation in both mammalian and insect cells. J Virol 2004; 78: 6698–6704.

    Article  CAS  Google Scholar 

  41. Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G . Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 2005; 79: 9556–9565.

    Article  CAS  Google Scholar 

  42. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.

    Article  CAS  Google Scholar 

  43. Fehse B, Richters A, Putimtseva_Scharf K, Klump H, Li Z, Ostertag W et al. CD34 splice variant: an attractive marker for selection of gene-modified cells. Mol Ther 2000; 1: 448–456.

    Article  CAS  Google Scholar 

  44. Milsom MD, Jerabek-Willemsen M, Harris CE, Schambach A, Broun E, Bailey J et al. Reciprocal relationship between O6-methylguanine-DNA methyltransferase P140K expression level and chemoprotection of hematopoietic stem cells. Cancer Res 2008; 68: 6171–6180.

    Article  CAS  Google Scholar 

  45. Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM . Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci USA 2001; 98: 11450–11455.

    Article  CAS  Google Scholar 

  46. Galla M, Will E, Kraunus J, Chen L, Baum C . Retroviral pseudotransduction for targeted cell manipulation. Mol Cell 2004; 16: 309–315.

    Article  CAS  Google Scholar 

  47. Prasanth KV, Prasanth SG, Xuan Z, Hearn S, Freier SM, Bennett CF et al. Regulating gene expression through RNA nuclear retention. Cell 2005; 123: 249–263.

    Article  CAS  Google Scholar 

  48. Kawahara Y, Nishikura K . Extensive adenosine-to-inosine editing detected in Alu repeats of antisense RNAs reveals scarcity of sense-antisense duplex formation. FEBS Lett 2006; 580: 2301–2305.

    Article  CAS  Google Scholar 

  49. Poluri A, Sutton RE . Titers of HIV-based vectors encoding shRNAs are reduced by a dicer-dependent mechanism. Mol Ther 2008; 16: 378–386.

    Article  CAS  Google Scholar 

  50. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16: 718–725.

    Article  CAS  Google Scholar 

  51. Liu B, Paton JF, Kasparov S . Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol 2008; 8: 49.

    Article  Google Scholar 

  52. Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C . Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000; 2: 435–445.

    Article  CAS  Google Scholar 

  53. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2006; 2: e60.

    Article  Google Scholar 

  54. Tanaka N, Sato M, Lamphier MS, Nozawa H, Oda E, Noguchi S et al. Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells 1998; 3: 29–37.

    Article  CAS  Google Scholar 

  55. Der SD, Yang YL, Weissmann C, Williams BR . A double-stranded RNA-activated protein kinase-dependent pathway mediating stress-induced apoptosis. Proc Natl Acad Sci USA 1997; 94: 3279–3283.

    Article  CAS  Google Scholar 

  56. Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    Article  CAS  Google Scholar 

  57. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  Google Scholar 

  58. Morita S, Kojima T, Kitamura T . Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy 2000; 7: 1063–1070.

    Article  CAS  Google Scholar 

  59. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK . Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993; 90: 8033–8037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants of the German Ministry for Research and Education (TreatID, Pidnet), the DAAD (German-Chinese junior research groups), the Deutsche Forschungsgemeinschaft (DFG, that is SFB738 and Excellence Cluster REBIRTH) and the European Union (CONSERT, LSHB-CT-2004-005242; Clinigene, LSHB-CT-2006-018933, Persist), the German National Merit foundation (stipend to TM) and the Else Kröner Fresenius Stiftung (fellowship to AS). We thank Bernhard Gentner and Luigi Naldini for helpful comments and suggestions. We are grateful to Ute Modlich for sharing the qPCR standard, to Don Ganem and Christopher Sullivan for kindly providing the Nodamuravirus B2 expression plasmid, to Dirk Lindemann providing the HFV tas cDNA, to Beau Fenner and Jimmy Kwang for providing the Betanodavirus B2 expression plasmid, to Kajohn Boonrod for providing p19 RNA, and to Roger Y Tsien for providing the mCherry cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Schambach.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maetzig, T., Galla, M., Brugman, M. et al. Mechanisms controlling titer and expression of bidirectional lentiviral and gammaretroviral vectors. Gene Ther 17, 400–411 (2010). https://doi.org/10.1038/gt.2009.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.129

Keywords

This article is cited by

Search

Quick links