Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional IL-15-directed in vivo DC targeting DNA vaccine

Abstract

Dendritic cells (DC) engineered in vitro by DNA encoding OVAhsp70 and IL-15 up-regulated their expressions of CD80, CD86, CCR7 and IL-15Rα and promoted their productions of IL-6, IL-12 and TNF-α. Transcriptional IL-15-directed in vivo DC targeting DNA vaccine encoding OVAhsp70 elicited long-lasting Th1 and CTL responses and anti-B16OVA activity. CD8T cell-mediated primary tumor protection was abrogated by DC or CD4T cell depletion during the induction phase of immune responses. However, CD4T cell depletion during immunization did not impair CD8T cell-dependent long-lasting tumor protection. Furthermore, in vivo DC-derived IL-15 exerted the enhancements of cellular and humoral immune responses and antitumor immunity elicited by OVAhsp70 DNA vaccine. Importantly, the potency of this novel DNA vaccine strategy was proven using a self/tumor Ag (TRP2) in a clinically relevant B16 melanoma model. These findings have implications for developing next generation DNA vaccines against cancers and infectious diseases in both healthy and CD4 deficient individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gurunathan S, Wu CY, Freidag BL, Seder RA . DNA vaccines: a key for inducing long-term cellular immunity. Curr Opin Immunol 2000; 12: 442–447.

    Article  CAS  PubMed  Google Scholar 

  2. Donnelly JJ, Wahren B, Liu MA . DNA vaccines: progress and challenges. J Immunol 2005; 175: 633–639.

    Article  CAS  PubMed  Google Scholar 

  3. Rice J, Ottensmeier CH, Stevenson FK . DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8: 108–120.

    Article  CAS  PubMed  Google Scholar 

  4. Barouch DH, Letvin NL, Seder RA . The role of cytokine DNAs as vaccine adjuvants for optimizing cellular immune responses. Immunol Rev 2004; 202: 266–274.

    Article  CAS  PubMed  Google Scholar 

  5. Kutzler MA, Weiner DB . Developing DNA vaccines that call to dendritic cells. J Clin Invest 2004; 114: 1241–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim TW, Hung CF, Ling M, Juang J, He L, Hardwick JM et al. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest 2003; 112: 109–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim JH, Chen J, Majumder N, Lin H, Falo Jr LD, You Z . ‘Survival gene’ Bcl-xl potentiates DNA-raised antitumor immunity. Gene Therapy 2005; 12: 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  8. Leitner WW, Baker MC, Berenberg TL, Lu MC, Yannie PJ, Udey MC . Enhancement of DNA tumor vaccine efficacy by gene gun-mediated codelivery of threshold amounts of plasmid-encoded helper antigen. Blood 2009; 113: 37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bronte V, Cingarlini S, Apolloni E, Serafini P, Marigo I, De Santo C et al. Effective genetic vaccination with a widely shared endogenous retroviral tumor antigen requires CD40 stimulation during tumor rejection phase. J Immunol 2003; 171: 6396–6405.

    Article  CAS  PubMed  Google Scholar 

  10. Greenland JR, Letvin NL . Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007; 25: 3731–3741.

    Article  CAS  PubMed  Google Scholar 

  11. Garmory HS, Brown KA, Titball RW . DNA vaccines: improving expression of antigens. Genet Vaccines Ther 2003; 1: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 2000; 164: 4635–4640.

    Article  CAS  PubMed  Google Scholar 

  13. Tsen SWD, Paik A, Hung CF, Wu TC . Enhancing DNA vaccine potency by modifying the properties of antigen-presenting cells. Expert Rev Vaccines 2007; 6: 227–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo Jr LD . DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  15. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN . Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188: 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B . DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999; 189: 169–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS et al. Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 2004; 114: 1334–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tacken PJ, de Vries IJ, Torensma R, Figdor CG . Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7: 790–802.

    Article  CAS  PubMed  Google Scholar 

  19. Steinman RM . Dendritic cells in vivo: a key target for a new vaccine science. Immunity 2008; 29: 319–324.

    Article  CAS  PubMed  Google Scholar 

  20. Bedoui S, Davey GM, Lew AM, Heath WR . Equivalent stimulation of naive and memory CD8T cells by DNA vaccination: a dendritic cell-dependent process. Immunol Cell Biol 2009; 87: 255–259.

    Article  CAS  PubMed  Google Scholar 

  21. Demangel C, Zhou J, Choo ABH, Shoebridge G, Halliday GM, Britton WJ . Single chain antibody fragments for the selective targeting of antigens to dendritic cells. Mol Immunol 2005; 42: 979–985.

    Article  CAS  PubMed  Google Scholar 

  22. Nchinda G, Kuroiwa J, Oks M, Trumpfheller C, Park CG, Huang Y et al. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J Clin Invest 2008; 118: 1427–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199: 815–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007; 448: 501–505.

    Article  CAS  PubMed  Google Scholar 

  26. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Théry C, Rescigno M et al. Fcã receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 1999; 189: 371–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You Z, Huang X, Hester J, Toh HC, Chen SY . Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res 2001; 61: 3704–3711.

    CAS  PubMed  Google Scholar 

  28. Spies B, Hochrein H, Vabulas M, Huster K, Busch DH, Schmitz F et al. Vaccination with plasmid DNA activates dendritic cells via toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol 2003; 171: 5908–5912.

    Article  CAS  PubMed  Google Scholar 

  29. Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DW et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 2000; 60: 1035–1042.

    CAS  PubMed  Google Scholar 

  30. Hauser H, Shen L, Gu QL, Krueger S, Chen SY . Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Therapy 2004; 11: 924–932.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JH, Majumder N, Lin H, Chen J, Falo Jr LD, You Z . Enhanced immunity by NeuEDhsp70 DNA vaccine is needed to combat an aggressive spontaneous metastatic breast cancer. Mol Ther 2005; 11: 941–949.

    Article  CAS  PubMed  Google Scholar 

  32. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002; 17: 353–362.

    Article  CAS  PubMed  Google Scholar 

  33. Becker T, Hartl FU, Wieland F . CD40, an extracellular receptor for binding and uptake of Hsp70–peptide complexes. J Cell Biol 2002; 158: 1277–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Millar DG, Garza KM, Odermatt B, Elford AR, Ono N, Li Z et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 2003; 9: 1469–1476.

    Article  CAS  PubMed  Google Scholar 

  35. Waldmann TA . The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006; 6: 595–601.

    Article  CAS  PubMed  Google Scholar 

  36. Kutzler MA, Robinson TM, Chattergoon MA, Choo DK, Choo AY, Choe PY et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8T cells that are partially independent of CD4T cell help. J Immunol 2005; 175: 112–123.

    Article  CAS  PubMed  Google Scholar 

  37. Bolesta E, Kowalczyk A, Wierzbicki A, Eppolito C, Kaneko Y, Takiguchi M et al. Increased level and longevity of protective immune responses induced by DNA vaccine expressing the HIV-1 Env glycoprotein when combined with IL-21 and IL-15 gene delivery. J Immunol 2006; 177: 177–191.

    Article  CAS  PubMed  Google Scholar 

  38. Mattei F, Schiavoni G, Belardelli F, Tough DF . IL-15 is expressed by dendritic cells in response to type 1 IFN, double-stranded RNA, or lipopolysaccharides and promotes dendritic cell activation. J Immunol 2001; 167: 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  39. Ruckert R, Brandt K, Bulanova E, Mirghomizadeh F, Paus R, Bulfone-Paus S . Dendritic cell-derived IL-15 controls the induction of CD8T cell immune responses. Eur J Immunol 2003; 33: 3493–3503.

    Article  PubMed  Google Scholar 

  40. Saikh KU, Kissner TL, Nystrom S, Ruthel G, Ulrich RG . Interleukin-15 increases vaccine efficacy through a mechanism linked to dendritic cell maturation and enhanced antibody titers. Clin Vaccine Immunol 2008; 15: 131–137.

    Article  CAS  PubMed  Google Scholar 

  41. Lauterbach H, Gruber A, Ried C, Cheminay C, Brocker T . Insufficient APC capacities of dendritic cells in gene gun-mediated DNA vaccination. J Immunol 2006; 176: 4600–4607.

    Article  CAS  PubMed  Google Scholar 

  42. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994; 264: 965–968.

    Article  CAS  PubMed  Google Scholar 

  43. Ohteki T, Tada H, Ishida K, Sato T, Maki C, Yamada T et al. Essential roles of DC-derived IL-15 as a mediator of inflammatory responses in vivo. J Exp Med 2006; 203: 2329–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oh SK, Perera LP, Terabe M, Ni L, Waldmann TA, Berzofsky JA . IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis. Proc Natl Acad Sci USA 2008; 105: 5201–5206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tourkova IL, Yurkovetsky ZR, Gambotto A, Makarenkova VP, Perez L, Balkir L et al. Increased function and survival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15 R alpha and Bcl-2. J Leukoc Biol 2002; 72: 1037–1045.

    CAS  PubMed  Google Scholar 

  46. Dubois SP, Waldmann TA, Muller JR . Survival adjustment of mature dendritic cells by IL-15. Proc Natl Acad Sci USA 2005; 102: 8662–8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dubois S, Mariner J, Waldmann TA, Tagaya Y . IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 2002; 17: 537–547.

    Article  CAS  PubMed  Google Scholar 

  48. Koka R, Burkett PR, Chien M, Chai S, Chan F, Lodolce JP et al. Cutting edge: murine dendritic cells require IL-15Rα to prime NK cells. J Immunol 2004; 173: 3594–3598.

    Article  CAS  PubMed  Google Scholar 

  49. Mohamadzadeh M, Berard F, Essert G, Chalouni C, Pulendran B, Davoust J et al. Interleukin 15 skews monocyte differentiation into dendritic cells with features of langerhans cells. J Exp Med 2001; 194: 1013–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feili-Hariri M, Falkner DH, Morel PA . Polarization of naive T cells into Th1 or Th2 by distinct cytokine-driven murine dendritic cell populations: implications for immunotherapy. J Leukoc Biol 2005; 78: 656–664.

    Article  CAS  PubMed  Google Scholar 

  51. Pulendran B, Dillon S, Joseph C, Curiel T, Banchereau J, Mohamadzadeh M . Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur J Immunol 2004; 34: 66–73.

    Article  CAS  PubMed  Google Scholar 

  52. Dubsky P, Saito H, Leogier M, Dantin C, Connolly JE, Banchereau J et al. IL-15-induced human DC efficiently prime melanoma-specific naive CD8+ T cells to differentiate into CTL. Eur J Immunol 2007; 37: 1678–1690.

    Article  CAS  PubMed  Google Scholar 

  53. Ohteki T, Suzue K, Maki C, Ota T, Koyasu S . Critical role of IL-15-IL-15R for antigen-presenting cell functions in the innate immune response. Nat Immunol 2001; 2: 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  54. Hardy MY, Kassianos AJ, Vulink A, Wilkinson R, Jongbloed SL, Hart DNJ et al. NK cells enhance the induction of CTL responses by IL-15 monocyte-derived dendritic cells. Immunol Cell Biol 2009 (e-pub ahead of print 23 June 2009; doi: 10.1038/icb.2009.44).

    Article  CAS  PubMed  Google Scholar 

  55. Martín-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 2003; 198: 615–621.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun JC, Bevan MJ . Defective CD8T cell memory following acute infection without CD4T cell help. Science 2003; 300: 339–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shedlock DJ, Shen H . Requirement for CD4T cell help in generating functional CD8T cell memory. Science 2003; 300: 337–339.

    Article  CAS  PubMed  Google Scholar 

  58. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP . CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856.

    Article  CAS  PubMed  Google Scholar 

  59. Loser K, Mehling A, Apelt J, Ständer S, Andres PG, Reinecker HC et al. Enhanced contact hypersensitivity and antiviral immune responses in vivo by keratinocyte-targeted overexpression of IL-15. Eur J Immunol 2004; 34: 2022–2031.

    Article  CAS  PubMed  Google Scholar 

  60. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al. Reversible defects in natural killer and memory CD8T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Obst R, van Santen HM, Melamed R, Kamphorst AO, Benoist C, Mathis D . Sustained antigen presentation can promote an immunogenic T cell response, like dendritic cell activation. Proc Natl Acad Sci USA 2007; 104: 15460–15465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM . Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 2005; 174: 7516–7523.

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Zinkel S, Polonsky K, Fuchs E . Transgenic studies with a keratin promoter-driven growth hormone transgene: prospects for gene therapy. Proc Natl Acad Sci USA 1997; 94: 219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. You Z, Huang XF, Hester J, Rollins L, Rooney C, Chen SY . Induction of vigorous helper and cytotoxic T cell as well as B cell responses by dendritic cells expressing a modified antigen targeting receptor-mediated internalization pathway. J Immunol 2000; 165: 4581–4591.

    Article  CAS  PubMed  Google Scholar 

  65. Larregina AT, Morelli AE, Tkacheva O, Erdos G, Donahue C, Watkins SC et al. Highly efficient expression of transgenic proteins by naked DNA-transfected dendritic cells through terminal differentiation. Blood 2004; 103: 811–819.

    Article  CAS  PubMed  Google Scholar 

  66. Jung S, Unutmaz D, Wong P, Sano GI, De los Santos K, Sparwasser T et al. In vivo depletion of CD11c+ dendritic cells abrogation priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 2002; 17: 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to TA Waldmann (NIH), T Brocker (Ludwig-Maximilians-Universitat Munchen), G Erdos (University of Pittsburgh) and E Lord and J Frelinger (University of Rochester) for providing reagents. We are also indebted to RM Steinman (The Rockefeller University) for his constructive help. This work was supported by NIH grant R01CA108813 (to ZY), R01 AI076060, CA106662, and P01 CA73743 (to LDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z You.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, S., Liu, Z., Donahue, C. et al. Transcriptional IL-15-directed in vivo DC targeting DNA vaccine. Gene Ther 16, 1260–1270 (2009). https://doi.org/10.1038/gt.2009.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.110

Keywords

This article is cited by

Search

Quick links