Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress and prospects: human artificial chromosomes

Abstract

Artificial chromosomes (ACs) are highly promising vectors for use in gene therapy applications. They are able to maintain expression of genomic-sized exogenous transgenes within target cells, without integrating into the host genome. Although these vectors have huge potential and benefits when compared against normal expression constructs, they are highly complex, technically challenging to construct and diffcult to deliver to target cells. This review focuses on the current progress in the field of ACs and discusses the recent advances in purification, construction, delivery and potential new molecular therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Duncan A, Hadlaczky G . Chromosomal engineering. Curr Opin Biotechnol 2007; 18: 420–424.

    Article  CAS  PubMed  Google Scholar 

  2. Lufino MM, Edser PA, Wade-Martins R . Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008; 16: 1525–1538.

    Article  CAS  PubMed  Google Scholar 

  3. Ren X, Tahimic CG, Katoh M, Kurimasa A, Inoue T, Oshimura M . Human artificial chromosome vectors meet stem cells: new prospects for gene delivery. Stem Cell Rev 2006; 2: 43–50.

    CAS  PubMed  Google Scholar 

  4. Monaco ZL, Moralli D . Progress in artificial chromosome technology. Biochem Soc Trans 2006; 34: 324–327.

    Article  CAS  PubMed  Google Scholar 

  5. Heaney JD, Bronson SK . Artificial chromosome-based transgenes in the study of genome function. Mamm Genome 2006; 17: 791–807.

    Article  CAS  PubMed  Google Scholar 

  6. Peterson KR . Preparation of intact yeast artificial chromosome DNA for transgenesis of mice. Nat Protoc 2007; 2: 3009–3015.

    Article  CAS  PubMed  Google Scholar 

  7. Leem SH, Yoon YH, Kim SI, Larionov V . Purification of circular YACs from yeast cells for DNA sequencing. Genome 2008; 51: 155–158.

    Article  CAS  PubMed  Google Scholar 

  8. Kouprina N, Larionov V . Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protoc 2008; 3: 371–377.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou F, Li Q, Gao SJ . A sequence-independent in vitro transposon-based strategy for efficient cloning of genomes of large DNA viruses as bacterial artificial chromosomes. Nucleic Acids Res 2008; 37: e2 (doi:10.1093/nar/gkn890).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Macnab S, White R, Hiscox J, Whitehouse A . Production of an infectious Herpesvirus saimiri-based episomally maintained amplicon system. J Biotechnol 2008; 134: 287–296.

    Article  CAS  PubMed  Google Scholar 

  11. Hibbitt OC, Harbottle RP, Waddington SN, Bursill CA, Coutelle C, Channon KM et al. Delivery and long-term expression of a 135 kb LDLR genomic DNA locus in vivo by hydrodynamic tail vein injection. J Gene Med 2007; 9: 488–497.

    Article  CAS  PubMed  Google Scholar 

  12. Griffiths RA, Boyne JR, Whitehouse A . Herpesvirus saimiri-based gene delivery vectors. Curr Gene Ther 2006; 6: 1–15.

    Article  CAS  PubMed  Google Scholar 

  13. Grant KG, Krisky DM, Ataai MM, Glorioso III JC . Engineering cell lines for production of replication defective HSV-1 gene therapy vectors. Biotechnol Bioeng 2008; 102: 1087–1097.

    Article  Google Scholar 

  14. Moralli D, Simpson KM, Wade-Martins R, Monaco ZL . A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO Rep 2006; 7: 911–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiao W, Lin HM, Timmons J, Nagaich AK, Ng SW, Misteli T et al. E2F-dependent repression of topoisomerase II regulates heterochromatin formation and apoptosis in cells with melanoma-prone mutation. Cancer Res 2005; 65: 4067–4077.

    Article  CAS  PubMed  Google Scholar 

  16. Ooi YS, Warburton PE, Ravin NV, Narayanan K . Recombineering linear DNA that replicate stably in E. coli. Plasmid 2008; 59: 63–71.

    Article  CAS  PubMed  Google Scholar 

  17. Roguev A, Krogan NJ . BAC to the future: functional genomics in mammals. Nat Methods 2008; 5: 383–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poser I, Sarov M, Hutchins JR, Heriche JK, Toyoda Y, Pozniakovsky A et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 2008; 5: 409–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kotzamanis G, Abdulrazzak H, Gifford-Garner J, Haussecker PL, Cheung W, Grillot-Courvalin C et al. CFTR expression from a BAC carrying the complete human gene and associated regulatory elements. J Cell Mol Med 2008; 24 (Postprint; 10.1111/j.1582-4934.2008.00433.x).

  20. Hibbitt OC, Wade-Martins R . Delivery of large genomic DNA inserts >100 kb using HSV-1 amplicons. Curr Gene Ther 2006; 6: 325–336.

    Article  CAS  PubMed  Google Scholar 

  21. Gomez-Sebastian S, Gimenez-Cassina A, Diaz-Nido J, Lim F, Wade-Martins R . Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich′s ataxia deficiency in human cells. Mol Ther 2007; 15: 248–254.

    Article  CAS  PubMed  Google Scholar 

  22. Shitara S, Kakeda M, Nagata K, Hiratsuka M, Sano A, Osawa K et al. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector. Biochem Biophys Res Commun 2008; 369: 807–811.

    Article  CAS  PubMed  Google Scholar 

  23. Hoshiya H, Kazuki Y, Abe S, Takiguchi M, Kajitani N, Watanabe Y et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 MB entire human dystriophin gene. Mol Ther 2008; 17: 309–317.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoen P, de Meijer E, Boer J, Vossen R, Turk R, Maatman R et al. Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 2008; 283: 5899–5907.

    Article  PubMed  Google Scholar 

  25. Kinoshita Y, Kamitani H, Mamun M, Wasita B, Kazuki Y, Hiratsuka M et al. A gene delivery system with a human artificail chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells. Neurol Res 2009 (doi:10.1179/174313209X455718).

    Article  PubMed  Google Scholar 

  26. Katona R, Sinko I, Hollo G, Szucs K, Praznoszky T, Kereso J et al. A combined artificialchromosome-stem cell therapy method in a model experiment aimed at the treatment of Krabbe's disease in the Twitcher mouse. Cell Mol Life Sci 2008; 65: 3830–3838.

    Article  CAS  PubMed  Google Scholar 

  27. Kazuki Y, Hoshiya H, Kai Y, Abe S, Takiguchi M, Osaki M et al. Correction of a genetic defect in multipotent germline stem cells using a human artifical chromosome. Gene Therapy 2008; 15: 617–624.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Whitehouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macnab, S., Whitehouse, A. Progress and prospects: human artificial chromosomes. Gene Ther 16, 1180–1188 (2009). https://doi.org/10.1038/gt.2009.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.102

Keywords

This article is cited by

Search

Quick links