Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Control by pulse parameters of DNA electrotransfer into solid tumors in mice

Abstract

Electrotransfer (electroporation) is recognized as one of the most promising alternatives to viral vectors for transfection of different tissues in vivo for therapeutic purposes. We evaluated the transfection efficiency of reporter genes (green fluorescent protein and luciferase) in murine subcutaneous tumors using different combinations of high-field (HV) (600–1400 V cm−1, 100 μs, 8 pulses) and low-field (LV) (80–160 V cm−1, 50–400 ms, 1–8 pulses) pulses and compared it to protocol using eight identical pulses of 600 V cm−1 and 5 ms duration (electro-gene therapy, EGT). Expression of GFP was determined using a fluorescent microscope and flow cytometry and expression of luciferase by measuring its activity using a luminometer. The EGT protocol yielded the highest expression of both reporter genes. However, a careful optimization of combinations of HV and LV pulses may result in similar transfection as EGT pulses. With the combination protocol, relatively high fields of LV pulses were necessary to obtain comparable transfection to the EGT protocol. Expression of reporter genes was higher in B16 melanoma than in SA-1 fibrosarcoma. Our data support the hypothesis that both electropermeabilization and electrophoresis are involved in electrotransfer of plasmid DNA, but demonstrate that these components have to happen at the same time to obtain significant expression of the target gene in tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH . Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841–845.

    Article  CAS  Google Scholar 

  2. Titomirov AV, Sukharev S, Kistanova E . In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1991; 1088: 131–134.

    Article  CAS  Google Scholar 

  3. Isaka Y, Imai E . Electroporation-mediated gene therapy. Expert Opin Drug Deliv 2007; 4: 561–571.

    Article  CAS  Google Scholar 

  4. Cemazar M, Golzio M, Sersa G, Rols MP, Teissié J . Electrically-assisted nucleic acids delivery to tissues in vivo: where do we stand? Curr Pharm Des 2006; 12: 3817–3825.

    Article  CAS  Google Scholar 

  5. Henshaw JW, Yuan F . Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery. J Pharm Sci 2008; 97: 691–711.

    Article  CAS  Google Scholar 

  6. Heller LC, Heller R . In vivo electroporation for gene therapy. Hum Gene Ther 2006; 17: 890–897.

    Article  CAS  Google Scholar 

  7. Prud'homme GJ, Glinka Y, Khan AS, Draghia-Akli R . Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 2006; 6: 243–273.

    Article  CAS  Google Scholar 

  8. Cemazar M, Sersa G . Electrotransfer of therapeutic molecules into tissues. Curr Opin Mol Ther 2007; 9: 554–562.

    CAS  PubMed  Google Scholar 

  9. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26: 5896–5903.

    Article  CAS  Google Scholar 

  10. Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissié J . In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 1998; 16: 168–171.

    Article  CAS  Google Scholar 

  11. Bettan M, Ivanov MA, Mir LM, Boissière F, Delaere P, Scherman D . Efficient DNA electrotransfer into tumors. Bioelectrochemistry 2000; 52: 83–90.

    Article  CAS  Google Scholar 

  12. Cemazar M, Sersa G, Wilson J, Tozer GM, Hart SL, Grosel A et al. Effective gene transfer to solid tumours using different non-viral gene delivery techniques: electroporation, liposomes and integrin-targeted vector. Cancer Gene Ther 2002; 9: 399–406.

    Article  CAS  Google Scholar 

  13. Aihara H, Miyazaki J . Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16: 867–870.

    Article  CAS  Google Scholar 

  14. Niu G, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W et al. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 1999; 59: 5059–5063.

    CAS  PubMed  Google Scholar 

  15. Lucas ML, Heller R . IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol 2003; 22: 755–763.

    Article  CAS  Google Scholar 

  16. Lucas ML, Heller L, Coppola D, Heller R . IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther 2002; 5: 668–675.

    Article  CAS  Google Scholar 

  17. Bureau MF, Gehl J, Deleuze V, Mir LM, Scherman D . Importance of association between permeabilization and electrophoretic forces for intramuscular DNA electrotransfer. Biochim Biophys Acta 2000; 1474: 353–359.

    Article  CAS  Google Scholar 

  18. Andre FM, Gehl J, Sersa G, Preat V, Hojman P, Eriksen J et al. Efficiency of high and low voltage pulse combinations for gene electrotransfer in muscle, liver, tumor and skin. Hum Gene Ther 2008; 19: 1261–1271.

    Article  CAS  Google Scholar 

  19. Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 2002; 5: 133–140.

    Article  CAS  Google Scholar 

  20. Pavselj N, Preat V . DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J Control Release 2005; 106: 407–415.

    Article  CAS  Google Scholar 

  21. Vandermeulen G, Staes E, Vanderhaeghen ML, Bureau MF, Scherman D, Préat V . Optimisation of intradermal DNA electrotransfer for immunisation. J Control Release 2007; 4: 81–87.

    Article  Google Scholar 

  22. Tevz G, Pavlin D, Kamensek U, Kranjc S, Mesojednik S, Coer A et al. Gene electrotransfer into murine skeletal muscle: a systematic analysis of parameters for long-term gene expression. Technol Cancer Res Treat 2008; 7: 91–102.

    Article  CAS  Google Scholar 

  23. Pavlin D, Tozon N, Sersa G, Pogacnik A, Cemazar M . Efficient electrotransfection into canine muscle. Technol Cancer Res Treat 2008; 7: 45–54.

    Article  CAS  Google Scholar 

  24. Valic B, Golzio M, Pavlin M, Schatz A, Faurie C, Gabriel B et al. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J 2003; 32: 519–528.

    Article  Google Scholar 

  25. Faurie C, Golzio M, Moller P, Teissie J, Rols MP . Cell and animal imaging of electrically mediated gene transfer. DNA Cell Biol 2003; 22: 777–783.

    Article  CAS  Google Scholar 

  26. Mesojednik S, Pavlin D, Sersa G, Coer A, Kranjc S, Grosel A et al. The effect of the histological properties of tumors on transfection efficiency of electrically assisted gene delivery to solid tumors in mice. Gene Therapy 2007; 14: 1261–1269.

    Article  CAS  Google Scholar 

  27. Liu F, Heston S, Shollenberger LM, Sun B, Mickle M, Lovell M et al. Mechanism of in vivo DNA transport into cells by electroporation: electrophoresis across the plasma membrane may not be involved. J Gene Med 2006; 8: 353–361.

    Article  Google Scholar 

  28. Zaharoff DA, Henshaw JW, Mossop B, Yuan F . Mechanistic analysis of electroporation-induced cellular uptake of macromolecules. Exp Biol Med 2008; 233: 94–105.

    Article  CAS  Google Scholar 

  29. Cashman JP, Larkin JO, Casey G, Whelan MC, Collins C, Aarons S et al. Immune gene therapy as a neoadjuvant to surgical excision to control metastatic cancers. Cancer Lett 2008; 262: 94–102.

    Article  CAS  Google Scholar 

  30. Pucihar G, Kotnik T, Teissié J, Miklavcic D . Electropermeabilization of dense cell suspensions. Eur Biophys J 2007; 36: 173–185.

    Article  Google Scholar 

  31. Zaharoff DA, Barr RC, Li CY, Yuan F . Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Therapy 2002; 9: 1286–1290.

    Article  CAS  Google Scholar 

  32. Zupanic A, Ribaric S, Miklavcic D . Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electrochemotherapy. Neoplasma 2007; 54: 246–250.

    CAS  PubMed  Google Scholar 

  33. Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM . Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum Gene Ther 2005; 16: 1194–1201.

    Article  CAS  Google Scholar 

  34. Pavselj N, Miklavcic D . Numerical modeling in electroporation-based biomedical applications. Radiol Oncol 2008; 42: 159–168.

    Article  Google Scholar 

  35. Mossop BJ, Barr RC, Henshaw JW, Zaharoff DA, Yuan F . Electric fields in tumors exposed to external voltage sources: implication for electric field-mediated drug and gene delivery. Ann Biomed Eng 2006; 34: 1564–1572.

    Article  Google Scholar 

  36. Henshaw JW, Zaharoff DA, Mossop BJ, Yuan F . Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo. Bioelectrochemistry 2007; 71: 233–242.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Association Française des Myopathies, the Ligue Francaise contre le Cancer, the CNRS–CEA joint program (Imagerie du petit animal) and the Slovenian Research Agency (project nos. P3-0003 and J3-7044), and the European Commission's 5th Framework Program (Cliniporator, QLK3-1999-00484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Teissie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cemazar, M., Golzio, M., Sersa, G. et al. Control by pulse parameters of DNA electrotransfer into solid tumors in mice. Gene Ther 16, 635–644 (2009). https://doi.org/10.1038/gt.2009.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.10

Keywords

This article is cited by

Search

Quick links