Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Toward exascale production of recombinant adeno-associated virus for gene transfer applications

Abstract

To gain acceptance as a medical treatment, adeno-associated virus (AAV) vectors require a scalable and economical production method. Recent developments indicate that recombinant AAV (rAAV) production in insect cells is compatible with current good manufacturing practice production on an industrial scale. This platform can fully support development of rAAV therapeutics from tissue culture to small animal models, to large animal models, to toxicology studies, to Phase I clinical trials and beyond. Efforts to characterize, optimize and develop insect cell-based rAAV production have culminated in successful bioreactor-scale production of rAAV, with total yields potentially capable of approaching the ‘exa-(1018) scale.’ These advances in large-scale AAV production will allow us to address specific catastrophic, intractable human diseases such as Duchenne muscular dystrophy, for which large amounts of recombinant vector are essential for successful outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Negrete A, Yang LC, Mendez AF, Levy JR, Kotin RM . Economized large-scale production of high yield of rAAV for gene therapy applications exploiting baculovirus expression system. J Gene Med 2007; 9: 938–948.

    Article  CAS  PubMed  Google Scholar 

  2. Negrete A, Esteban G, Kotin RM . Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Appl Microbiol Biotechnol 2007; 76: 761–772.

    Article  CAS  PubMed  Google Scholar 

  3. Aucoin MG, Perrier M, Kamen AA . Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv 2008; 26: 73–88.

    Article  CAS  PubMed  Google Scholar 

  4. Kotin RM, Linden RM, Berns KI . Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 1992; 11: 5071–5078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kotin RM, Menninger JC, Ward DC, Berns KI . Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 1991; 10: 831–834.

    Article  CAS  PubMed  Google Scholar 

  6. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10: 3941–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith RH, Kotin RM . Adeno-associated virus. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds). Mobile II DNA. ASM Press: Washington, DC, 2002, pp 905–923.

    Chapter  Google Scholar 

  9. Chiorini JA, Weitzman MD, Owens RA, Urcelay E, Safer B, Kotin RM . Biologically active Rep proteins of adeno-associated virus type 2 produced as fusion proteins in Escherichia coli. J Virol 1994; 68: 797–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Im DS, Muzyczka N . The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 1990; 61: 447–457.

    Article  CAS  PubMed  Google Scholar 

  11. Smith RH, Kotin RM . An adeno-associated virus (AAV) initiator protein, Rep78, catalyzes the cleavage and ligation of single-stranded AAV ori DNA. J Virol 2000; 74: 3122–3129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 10405–10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samulski RJ, Chang LS, Shenk T . Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989; 63: 3822–3828.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hermonat PL, Muzyczka N . Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 1984; 81: 6466–6470.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Collaco RF, Cao X, Trempe JP . A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 1999; 238: 397–405.

    Article  CAS  PubMed  Google Scholar 

  16. Grimm D, Kern A, Rittner K, Kleinschmidt JA . Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 1998; 9: 2745–2760.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vincent KA, Piraino ST, Wadsworth SC . Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products. J Virol 1997; 71: 1897–1905.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu XL, Clark KR, Johnson PR . Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene Therapy 1999; 6: 293–299.

    Article  CAS  PubMed  Google Scholar 

  20. Clark KR, Voulgaropoulou F, Fraley DM, Johnson PR . Cell lines for the production of recombinant adeno-associated virus. Hum Gene Ther 1995; 6: 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Voulgaropoulou F, Chen R, Johnson PR, Clark KR . Selective Rep-Cap gene amplification as a mechanism for high-titer recombinant AAV production from stable cell lines. Mol Ther 2000; 2: 394–403.

    Article  CAS  PubMed  Google Scholar 

  22. Clark KR, Voulgaropoulou F, Johnson PR . A stable cell line carrying adenovirus-inducible rep and cap genes allows for infectivity titration of adeno-associated virus vectors. Gene Therapy 1996; 3: 1124–1132.

    CAS  PubMed  Google Scholar 

  23. Grimm D, Kleinschmidt JA . Progress in adeno-associated virus type 2 vector production: promises and prospects for clinical use. Hum Gene Ther 1999; 10: 2445–2450.

    Article  CAS  PubMed  Google Scholar 

  24. Grimm D . Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 2002; 28: 146–157.

    Article  CAS  PubMed  Google Scholar 

  25. Chadeuf G, Favre D, Tessier J, Provost N, Nony P, Kleinschmidt J et al. Efficient recombinant adeno-associated virus production by a stable rep-cap HeLa cell line correlates with adenovirus-induced amplification of the integrated rep-cap genome. J Gene Med 2000; 2: 260–268.

    Article  CAS  PubMed  Google Scholar 

  26. Conway JE, Rhys CM, Zolotukhin I, Zolotukhin S, Muzyczka N, Hayward GS et al. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Therapy 1999; 6: 986–993.

    Article  CAS  PubMed  Google Scholar 

  27. Conway JE, Zolotukhin S, Muzyczka N, Hayward GS, Byrne BJ . Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap. J Virol 1997; 71: 8780–8789.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Christensen ND, Hopfl R, DiAngelo SL, Cladel NM, Patrick SD, Welsh PA et al. Assembled baculovirus-expressed human papillomavirus type 11 L1 capsid protein virus-like particles are recognized by neutralizing monoclonal antibodies and induce high titres of neutralizing antibodies. J Gen Virol 1994; 75 (Part 9): 2271–2276.

    Article  CAS  PubMed  Google Scholar 

  29. Kirnbauer R, Taub J, Greenstone H, Roden R, Durst M, Gissmann L et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. J Virol 1993; 67: 6929–6936.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rose RC, Bonnez W, Reichman RC, Garcea RL . Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 1993; 67: 1936–1944.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Touze A, Dupuy C, Mahe D, Sizaret PY, Coursaget P . Production of recombinant virus-like particles from human papillomavirus types 6 and 11, and study of serological reactivities between HPV 6, 11, 16 and 45 by ELISA: implications for papillomavirus prevention and detection. FEMS Microbiol Lett 1998; 160: 111–118.

    Article  CAS  PubMed  Google Scholar 

  32. Conner ME, Zarley CD, Hu B, Parsons S, Drabinski D, Greiner S et al. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis 1996; 174 (Suppl 1): S88–S92.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang B, Barniak V, Smith RP, Sharma R, Corsaro B, Hu B et al. Synthesis of rotavirus-like particles in insect cells: comparative and quantitative analysis. Biotechnol Bioeng 1998; 60: 369–374.

    Article  CAS  PubMed  Google Scholar 

  34. Madore HP, Estes MK, Zarley CD, Hu B, Parsons S, Digravio D et al. Biochemical and immunologic comparison of virus-like particles for a rotavirus subunit vaccine. Vaccine 1999; 17: 2461–2471.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang X, Zhong W, Kaplan M, Pickering LK, Matson DO . Expression and characterization of Sapporo-like human calicivirus capsid proteins in baculovirus. J Virol Methods 1999; 78: 81–91.

    Article  CAS  PubMed  Google Scholar 

  36. Guo M, Qian Y, Chang KO, Saif LJ . Expression and self-assembly in baculovirus of porcine enteric calicivirus capsids into virus-like particles and their use in an enzyme-linked immunosorbent assay for antibody detection in swine. J Clin Microbiol 2001; 39: 1487–1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Urabe M, Ding C, Kotin RM . Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 2002; 13: 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  38. Zeiser A, Elias CB, Voyer R, Jardin B, Kamen AA . On-line monitoring of physiological parameters of insect cell cultures during the growth and infection process. Biotechnol Prog 2000; 16: 803–808.

    Article  CAS  PubMed  Google Scholar 

  39. Elias CB, Jardin B, Kamen A . Recombinant protein production in large-scale agitated bioreactors using the baculovirus expression vector system. Methods Mol Biol 2007; 388: 225–246.

    Article  CAS  PubMed  Google Scholar 

  40. Janakiraman V, Forrest WF, Seshagiri S . Estimation of baculovirus titer based on viable cell size. Nat Protoc 2006; 1: 2271–2276.

    Article  CAS  PubMed  Google Scholar 

  41. Zeiser A, Bedard C, Voyer R, Jardin B, Tom R, Kamen AA . On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol Bioeng 1999; 63: 122–126.

    Article  CAS  PubMed  Google Scholar 

  42. Tom RL, Debanne MT, Bedard C, Caron AW, Massie B, Kamen AA . Improved yields of the extracellular domain of the epidermal growth factor receptor produced using the baculovirus expression system by medium replacement following infection. Appl Microbiol Biotechnol 1995; 44: 53–58.

    Article  CAS  PubMed  Google Scholar 

  43. Tom RL, Caron AW, Massie B, Kamen AA . Scale-up of recombinant virus and protein production in stirred-tank reactors. Methods Mol Biol 1995; 39: 203–224.

    CAS  PubMed  Google Scholar 

  44. Bedard C, Kamen A, Tom R, Massie B . Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 1994; 15: 129–138.

    Article  CAS  PubMed  Google Scholar 

  45. Bedard C, Tom R, Kamen A . Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol Prog 1993; 9: 615–624.

    Article  CAS  PubMed  Google Scholar 

  46. Casal J . Parvovirus diagnostics and vaccine production in insect cells. Cytotechnology 1996; 20: 261–270.

    Article  CAS  PubMed  Google Scholar 

  47. Kohlbrenner E, Aslanidi G, Nash K, Shklyaev S, Campbell-Thompson M, Byrne BJ et al. Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther 2005; 12: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  48. Krell P . Passage effect of virus infection in insect cells. Cytotechnology 1996; 2: 125–137.

    Article  Google Scholar 

  49. Hermens WT, Haast SJP, Biesmans DJ, Bakker AC . AAV vectors with improved rep coding sequences for production in insect cells. In: Office EP (ed). European Patent Office Publication, Reference WO 2007 148971, 2007.

  50. Schmidt M, Afione S, Kotin RM . Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J Virol 2000; 74: 9441–9450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hermonat PL . The adeno-associated virus Rep78 gene inhibits cellular transformation induced by bovine papillomavirus. Virology 1989; 172: 253–261.

    Article  CAS  PubMed  Google Scholar 

  52. Horer M, Weger S, Butz K, Hoppe-Seyler F, Geisen C, Kleinschmidt JA . Mutational analysis of adeno-associated virus Rep protein-mediated inhibition of heterologous and homologous promoters. J Virol 1995; 69: 5485–5496.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Needham PG, Casper JM, Kalman-Maltese V, Verrill K, Dignam JD, Trempe JP . Adeno-associated virus rep protein-mediated inhibition of transcription of the adenovirus major late promoter in vitro. J Virol 2006; 80: 6207–6217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aucoin MG, Perrier M, Kamen AA . Production of adeno-associated viral vectors in insect cells using triple infection: optimization of baculovirus concentration ratios. Biotechnol Bioeng 2006; 95: 1081–1092.

    Article  CAS  PubMed  Google Scholar 

  55. Meghrous J, Aucoin MG, Jacob D, Chahal PS, Arcand N, Kamen AA . Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell suspension culture system: from shake flasks to a 20-L bioreactor. Biotechnol Prog 2005; 21: 154–160.

    Article  CAS  PubMed  Google Scholar 

  56. Prikhod'ko E, Miller L . Role of baculovirus IE2 and its RING finger in cell cycle arrest. J Virol 1998; 72: 684–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Negrete A, Kotin RM . Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. J Virol Methods 2007; 145: 155–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Auricchio A, Hildinger M, O'Connor E, Gao GP, Wilson JM . Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 2001; 12: 71–76.

    Article  CAS  PubMed  Google Scholar 

  59. Blouin V, Brument N, Toublanc E, Raimbaud I, Moullier P, Salvetti A . Improving rAAV production and purification: towards the definition of a scaleable process. J Gene Med 2004; 6 (Suppl 1): S223–S228.

    Article  CAS  PubMed  Google Scholar 

  60. Brument N, Morenweiser R, Blouin V, Toublanc E, Raimbaud I, Cherel Y et al. A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5. Mol Ther 2002; 6: 678–686.

    Article  CAS  PubMed  Google Scholar 

  61. Clark KR, Liu X, McGrath JP, Johnson PR . Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 1999; 10: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  62. Davidoff AM, Ng CY, Sleep S, Gray J, Azam S, Zhao Y et al. Purification of recombinant adeno-associated virus type 8 vectors by ion exchange chromatography generates clinical grade vector stock. J Virol Methods 2004; 121: 209–215.

    Article  CAS  PubMed  Google Scholar 

  63. Gao G, Qu G, Burnham MS, Huang J, Chirmule N, Joshi B et al. Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum Gene Ther 2000; 11: 2079–2091.

    Article  CAS  PubMed  Google Scholar 

  64. Kaludov N, Handelman B, Chiorini JA . Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum Gene Ther 2002; 13: 1235–1243.

    Article  CAS  PubMed  Google Scholar 

  65. Smith RH, Ding C, Kotin RM . Serum-free production and column purification of adeno-associated virus type 5. J Virol Methods 2003; 114: 115–124.

    Article  CAS  PubMed  Google Scholar 

  66. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites Jr TJ et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.

    Article  CAS  PubMed  Google Scholar 

  67. Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004; 306: 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  68. Yuasa K, Sakamoto M, Miyagoe-Suzuki Y, Tanouchi A, Yamamoto H, Li J et al. Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product. Gene Therapy 2002; 9: 1576–1588.

    Article  CAS  PubMed  Google Scholar 

  69. Watchko J, O'Day T, Wang B, Zhou L, Tang Y, Li J et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 2002; 13: 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  70. Wang B, Li J, Xiao X . Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 2000; 97: 13714–13719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abmayr S, Gregorevic P, Allen JM, Chamberlain JS . Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by Igf1 codelivery. Mol Ther 2005; 12: 441–450.

    Article  CAS  PubMed  Google Scholar 

  72. Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D . Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 2005; 11: 245–256.

    Article  CAS  PubMed  Google Scholar 

  73. Yoshimura M, Sakamoto M, Ikemoto M, Mochizuki Y, Yuasa K, Miyagoe-Suzuki Y et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004; 10: 821–828.

    Article  CAS  PubMed  Google Scholar 

  74. Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D . Microdystrophin gene therapy of cardiomyopathy restores dystrophin-glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 2003; 108: 1626–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Intramural Research Program of the National Heart, Lung, and Blood Institute and NIH supported this work. A Cooperative Research and Development Agreement (CRADA) between Amsterdam Molecular Therapeutics and the NHLBI, the International Collaborative Effort (ICE) for Duchenne Muscular Dystrophy and the Parent Project Muscular Dystrophy (PPMD) provided additional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Kotin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecchini, S., Negrete, A. & Kotin, R. Toward exascale production of recombinant adeno-associated virus for gene transfer applications. Gene Ther 15, 823–830 (2008). https://doi.org/10.1038/gt.2008.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.61

Keywords

This article is cited by

Search

Quick links