Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer

Abstract

Fenestrae allow the passage of gene transfer vectors from the sinusoidal lumen to the surface of hepatocytes. We have previously shown that the diameter of fenestrae correlates with species and strain differences of transgene expression following intravenous adenoviral transfer. In the current study, we demonstrate that the diameter of fenestrae in humans without liver pathology is 107±1.5 nm. This is similar to the previously reported diameter in New Zealand White (NZW) rabbits (103±1.3 nm) and is significantly smaller than in C57BL/6 mice (141±5.4 nm) and Sprague–Dawley rats (161±2.7 nm). We show that the diameter of fenestrae in one male NZW rabbit and its offspring characterized by a more than 50-fold increase of transgene expression after adenoviral gene transfer is significantly (113±1.5 nm; P<0.001) larger than in control NZW rabbits. In vitro filtration experiments using polycarbonate filters with increasing pore sizes demonstrate that a relatively small increment of the diameter of pores potently enhances passage of adenoviral vectors, consistent with in vivo data. In conclusion, the small diameter of fenestrae in humans is likely to be a major obstacle for hepatocyte transduction by adenoviral vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wisse E . An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 1970; 31: 125–150.

    Article  CAS  Google Scholar 

  2. Wisse E . An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res 1972; 38: 528–562.

    Article  CAS  Google Scholar 

  3. Braet F, Wisse E . Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002; 1: 1.

    Article  Google Scholar 

  4. Snoeys J, Mertens G, Lievens J, van Berkel T, Collen D, Biessen EA et al. Lipid emulsions potently increase transgene expression in hepatocytes after adenoviral transfer. Mol Ther 2006; 13: 98–107.

    Article  CAS  Google Scholar 

  5. Kuzmin AI, Finegold MJ, Eisensmith RC . Macrophage depletion increases the safety, efficacy and persistence of adenovirus-mediated gene transfer in vivo. Gene Therapy 1997; 4: 309–316.

    Article  CAS  Google Scholar 

  6. Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG, Crystal RG . Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol 1997; 71: 624–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiedner G, Hertel S, Johnston M, Dries V, van Rooijen N, Kochanek S . Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther 2003; 7: 35–43.

    Article  CAS  Google Scholar 

  8. Lievens J, Snoeys J, Vekemans K, Van Linthout S, de Zanger R, Collen D et al. The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Therapy 2004; 11: 1523–1531.

    Article  CAS  Google Scholar 

  9. Snoeys J, Lievens J, Wisse E, Jacobs F, Duimel H, Collen D et al. Species differences in transgene DNA uptake in hepatocytes after adenoviral transfer correlate with the size of endothelial fenestrae. Gene Therapy 2007; 14: 604–612.

    Article  CAS  Google Scholar 

  10. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Therapy 2004; 11: 675–682.

    Article  CAS  Google Scholar 

  11. Liu F, Shollenberger LM, Conwell CC, Yuan X, Huang L . Mechanism of naked DNA clearance after intravenous injection. J Gene Med 2007; 9: 613–619.

    Article  CAS  Google Scholar 

  12. Banerjee R . Liposomes: applications in medicine. J Biomater Appl 2001; 16: 3–21.

    Article  CAS  Google Scholar 

  13. Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS . The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 1985; 5: 683–692.

    Article  CAS  Google Scholar 

  14. De Geest B, Zhao Z, Collen D, Holvoet P . Effects of adenovirus-mediated human apo A-I gene transfer on neointima formation after endothelial denudation in apo E-deficient mice. Circulation 1997; 96: 4349–4356.

    Article  CAS  Google Scholar 

  15. Van Linthout S, Lusky M, Collen D, De Geest B . Persistent hepatic expression of human apo A-I after transfer with a helper-virus independent adenoviral vector. Gene Therapy 2002; 9: 1520–1528.

    Article  CAS  Google Scholar 

  16. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002; 13: 163–175.

    Article  CAS  Google Scholar 

  17. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–158.

    Article  CAS  Google Scholar 

  18. Mok H, Palmer DJ, Ng P, Barry MA . Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 2005; 11: 66–79.

    Article  CAS  Google Scholar 

  19. Croyle MA, Le HT, Linse KD, Cerullo V, Toietta G, Beaudet A et al. PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Therapy 2005; 12: 579–587.

    Article  CAS  Google Scholar 

  20. De Geest B, Snoeys J, Van Linthout S, Lievens J, Collen D . Elimination of innate immune responses and liver inflammation by PEGylation of adenoviral vectors and methylprednisolone. Hum Gene Ther 2005; 16: 1439–1451.

    Article  CAS  Google Scholar 

  21. Gatmaitan Z, Varticovski L, Ling L, Mikkelsen R, Steffan AM, Arias IM . Studies on fenestral contraction in rat liver endothelial cells in culture. Am J Pathol 1996; 148: 2027–2041.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Neubauer K, Saile B, Ramadori G . Liver fibrosis and altered matrix synthesis. Can J Gastroenterol 2001; 15: 187–193.

    Article  CAS  Google Scholar 

  23. Horn T, Christoffersen P, Henriksen JH . Alcoholic liver injury: defenestration in noncirrhotic livers—a scanning electron microscopic study. Hepatology 1987; 7: 77–82.

    Article  CAS  Google Scholar 

  24. McLean AJ, Cogger VC, Chong GC, Warren A, Markus AM, Dahlstrom JE et al. Age-related pseudocapillarization of the human liver. J Pathol 2003; 200: 112–117.

    Article  Google Scholar 

  25. Ganeshan B, Miles KA, Young RC, Chatwin CR . Hepatic enhancement in colorectal cancer: texture analysis correlates with hepatic hemodynamics and patient survival. Acad Radiol 2007; 14: 1520–1530.

    Article  Google Scholar 

  26. Totman JJ, O'Gorman RL, Kane PA, Karani JB . Comparison of the hepatic perfusion index measured with gadolinium-enhanced volumetric MRI in controls and in patients with colorectal cancer. Br J Radiol 2005; 78: 105–109.

    Article  CAS  Google Scholar 

  27. Warren HW, Gallagher H, Hemingway DM, Angerson WJ, Bessent RG, Wotherspoon H et al. Prospective assessment of the hepatic perfusion index in patients with colorectal cancer. Br J Surg 1998; 85: 1708–1712.

    Article  CAS  Google Scholar 

  28. Kaner RJ, Worgall S, Leopold PL, Stolze E, Milano E, Hidaka C et al. Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol 1999; 20: 361–370.

    Article  CAS  Google Scholar 

  29. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  Google Scholar 

  30. Wu E, Pache L, Von Seggern DJ, Mullen TM, Mikyas Y, Stewart PL et al. Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 2003; 77: 7225–7235.

    Article  CAS  Google Scholar 

  31. Lusky M, Christ M, Rittner K, Dieterle A, Dreyer D, Mourot B et al. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted. J Virol 1998; 72: 2022–2032.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. De Geest B, Van Linthout S, Lox M, Collen D, Holvoet P . Sustained expression of human apolipoprotein A-I after adenoviral gene transfer in C57BL/6 mice: role of apolipoprotein A-I promoter, apolipoprotein A-I introns, and human apolipoprotein E enhancer. Hum Gene Ther 2000; 11: 101–112.

    Article  CAS  Google Scholar 

  33. De Geest B, Van Linthout S, Collen D . Sustained expression of human apo A-I following adenoviral gene transfer in mice. Gene Therapy 2001; 8: 121–127.

    Article  CAS  Google Scholar 

  34. Saulnier P, Vidaud M, Gautier E, Motte N, Bellet D, Escudier B et al. Development and validation of a real-time PCR assay for the detection and quantitation of p53 recombinant adenovirus in clinical samples from patients treated with Ad5CMV-p53 (INGN 201). J Virol Methods 2003; 114: 55–64.

    Article  CAS  Google Scholar 

  35. Wisse E, De Zanger RB, Jacobs R, McCuskey RS . Scanning electron microscope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scan Electron Microsc 1983 (Part 3): 1441–1452.

Download references

Acknowledgements

This work was supported by Grant G.0322.06N of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. The Center for Molecular and Vascular Biology is supported by the Excellentiefinanciering KU Leuven (EF/05/013). Frank Jacobs is a Research Assistant of the Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen. We thank H Duimel, J Hendrix and Z Zhang for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B De Geest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisse, E., Jacobs, F., Topal, B. et al. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15, 1193–1199 (2008). https://doi.org/10.1038/gt.2008.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.60

Keywords

This article is cited by

Search

Quick links