Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy

Abstract

We have recently developed a non-cytopathic RNA replicon-based viral vector system based on the flavivirus Kunjin. Here, we illustrate the utility of the Kunjin replicon system for gene therapy. Intra-tumoral injections of Kunjin replicon virus-like particles encoding granulocyte colony-stimulating factor were able to cure >50% of established subcutaneous CT26 colon carcinoma and B16-OVA melanomas. Regression of CT26 tumours correlated with the induction of anti-cancer CD8 T cells, and treatment of subcutaneous CT26 tumours also resulted in the regression of CT26 lung metastases. Only a few immune-based strategies are able to cure these aggressive tumours once they are of a reasonable size, illustrating the potential of this vector system for intra-tumoral gene therapy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, Emdad L et al. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 2006; 111: 596–628.

    Article  CAS  Google Scholar 

  2. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 2006; 12: 6737–6747.

    Article  CAS  Google Scholar 

  3. Peng Z . Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016–1027.

    Article  CAS  Google Scholar 

  4. Favaro E, Indraccolo S . Gene therapy of cancer in the clinic: good news in sight from Asia? Curr Opin Mol Ther 2007; 9: 477–482.

    CAS  PubMed  Google Scholar 

  5. Pijlman GP, Suhrbier A, Khromykh AA . Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 2006; 6: 135–145.

    Article  CAS  Google Scholar 

  6. Khromykh AA . Replicon-based vectors of positive strand RNA viruses. Curr Opin Mol Ther 2000; 2: 555–569.

    CAS  PubMed  Google Scholar 

  7. Yamanaka R . Alphavirus vectors for cancer gene therapy (Review). Int J Oncol 2004; 24: 919–923.

    CAS  PubMed  Google Scholar 

  8. Harvey TJ, Liu WJ, Wang XJ, Linedale R, Jacobs M, Davidson A et al. Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. J Virol 2004; 78: 531–538.

    Article  CAS  Google Scholar 

  9. Hall RA, Broom AK, Smith DW, Mackenzie JS . The ecology and epidemiology of Kunjin virus. Curr Top Microbiol Immunol 2002; 267: 253–269.

    CAS  PubMed  Google Scholar 

  10. Pugachev KV, Guirakhoo F, Ocran SW, Mitchell F, Parsons M, Penal C et al. High fidelity of yellow fever virus RNA polymerase. J Virol 2004; 78: 1032–1038.

    Article  CAS  Google Scholar 

  11. Ketola A, Schlesinger S, Wahlfors J . Properties of Sindbis virus vectors produced with a chimeric split helper system. Int J Mol Med 2005; 15: 999–1003.

    CAS  PubMed  Google Scholar 

  12. Varnavski AN, Young PR, Khromykh AA . Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol 2000; 74: 4394–4403.

    Article  CAS  Google Scholar 

  13. Hege KM, Jooss K, Pardoll D . GM-CSF gene-modified cancer cell immunotherapies: of mice and men. Int Rev Immunol 2006; 25: 321–352.

    Article  CAS  Google Scholar 

  14. Crittenden MR, Thanarajasingam U, Vile RG, Gough MJ . Intratumoral immunotherapy: using the tumour against itself. Immunology 2005; 114: 11–22.

    Article  CAS  Google Scholar 

  15. Wu Q, Mahendran R, Esuvaranathan K . Nonviral cytokine gene therapy on an orthotopic bladder cancer model. Clin Cancer Res 2003; 9: 4522–4528.

    CAS  PubMed  Google Scholar 

  16. Heller L, Pottinger C, Jaroszeski MJ, Gilbert R, Heller R . In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res 2000; 10: 577–583.

    Article  CAS  Google Scholar 

  17. Ju DW, Cao X, Acres B . Intratumoral injection of GM-CSF gene encoded recombinant vaccinia virus elicits potent antitumor response in a mixture melanoma model. Cancer Gene Ther 1997; 4: 139–144.

    CAS  PubMed  Google Scholar 

  18. Hill HC, Conway Jr TF, Sabel MS, Jong YS, Mathiowitz E, Bankert RB et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease. Cancer Res 2002; 62: 7254–7263.

    CAS  PubMed  Google Scholar 

  19. Hubert P, Evrard B, Maillard C, Franzen-Detrooz E, Delattre L, Foidart JM et al. Delivery of granulocyte-macrophage colony-stimulating factor in bioadhesive hydrogel stimulates migration of dendritic cells in models of human papillomavirus-associated (pre)neoplastic epithelial lesions. Antimicrob Agents Chemother 2004; 48: 4342–4348.

    Article  CAS  Google Scholar 

  20. Ali S, Ahmad M, Lynam J, Rees RC, Brown N . Trafficking of tumor peptide-specific cytotoxic T lymphocytes into the tumor microcirculation. Int J Cancer 2004; 110: 239–244.

    Article  CAS  Google Scholar 

  21. Pan PY, Li Y, Li Q, Gu P, Martinet O, Thung S et al. In situ recruitment of antigen-presenting cells by intratumoral GM-CSF gene delivery. Cancer Immunol Immunother 2004; 53: 17–25.

    Article  CAS  Google Scholar 

  22. Li Q, Pan PY, Gu P, Xu D, Chen SH . Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res 2004; 64: 1130–1139.

    Article  CAS  Google Scholar 

  23. Zeh III HJ, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC . High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 1999; 162: 989–994.

    CAS  PubMed  Google Scholar 

  24. Prell RA, Li B, Lin JM, VanRoey M, Jooss K . Administration of IFN-alpha enhances the efficacy of a granulocyte macrophage colony stimulating factor-secreting tumor cell vaccine. Cancer Res 2005; 65: 2449–2456.

    Article  CAS  Google Scholar 

  25. Ali SA, Lynam J, McLean CS, Entwisle C, Loudon P, Rojas JM et al. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity. J Immunol 2002; 168: 3512–3519.

    Article  CAS  Google Scholar 

  26. Tagliaferri P, Caraglia M, Budillon A, Marra M, Vitale G, Viscomi C et al. New pharmacokinetic and pharmacodynamic tools for interferon-alpha (IFN-alpha) treatment of human cancer. Cancer Immunol Immunother 2005; 54: 1–10.

    Article  CAS  Google Scholar 

  27. Moschella F, Bisikirska B, Maffei A, Papadopoulos KP, Skerrett D, Liu Z et al. Gene expression profiling and functional activity of human dendritic cells induced with IFN-alpha-2b: implications for cancer immunotherapy. Clin Cancer Res 2003; 9: 2022–2031.

    CAS  PubMed  Google Scholar 

  28. Carbonneil C, Aouba A, Burgard M, Cardinaud S, Rouzioux C, Langlade-Demoyen P et al. Dendritic cells generated in the presence of granulocyte-macrophage colony-stimulating factor and IFN-alpha are potent inducers of HIV-specific CD8T cells. AIDS 2003; 17: 1731–1740.

    Article  CAS  Google Scholar 

  29. Mailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML et al. Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 2004; 64: 5934–5937.

    Article  CAS  Google Scholar 

  30. Marrack P, Kappler J, Mitchell T . Type I interferons keep activated T cells alive. J Exp Med 1999; 189: 521–530.

    Article  CAS  Google Scholar 

  31. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF . Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 2005; 174: 4465–4469.

    Article  CAS  Google Scholar 

  32. Thompson LJ, Kolumam GA, Thomas S, Murali-Krishna K . Innate inflammatory signals induced by various pathogens differentially dictate the IFN-I dependence of CD8 T cells for clonal expansion and memory formation. J Immunol 2006; 177: 1746–1754.

    Article  CAS  Google Scholar 

  33. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K . Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 2005; 202: 637–650.

    Article  CAS  Google Scholar 

  34. Zhang X, Yang Z, Dong L, Papageorgiou A, McConkey DJ, Benedict WF . Adenoviral-mediated interferon alpha overcomes resistance to the interferon protein in various cancer types and has marked bystander effects. Cancer Gene Ther 2007; 14: 241–250.

    Article  CAS  Google Scholar 

  35. Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle WK, Dusak JE, Okada K et al. Sequential delivery of interferon-alpha gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Therapy 2004; 11: 1551–1558.

    Article  CAS  Google Scholar 

  36. Mazouz N, Detournay O, Buelens C, Renneson J, Trakatelli M, Lambermont M et al. Immunostimulatory properties of human dendritic cells generated using IFN-beta associated either with IL-3 or GM-CSF. Cancer Immunol Immunother 2005; 54: 1010–1017.

    Article  CAS  Google Scholar 

  37. Svane IM, Nikolajsen K, Walter MR, Buus S, Gad M, Claesson MH et al. Characterization of monocyte-derived dendritic cells maturated with IFN-alpha. Scand J Immunol 2006; 63: 217–222.

    Article  CAS  Google Scholar 

  38. Liu WJ, Chen HB, Wang XJ, Huang H, Khromykh AA . Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription. J Virol 2004; 78: 12225–12235.

    Article  CAS  Google Scholar 

  39. Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA . A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 2006; 80: 2396–2404.

    Article  CAS  Google Scholar 

  40. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan Tu G et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 2006; 12: 6808–6816.

    Article  CAS  Google Scholar 

  41. Bollati-Fogolin M, Forno G, Nimtz M, Conradt HS, Etcheverrigaray M, Kratje R . Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality. Biotechnol Prog 2005; 21: 17–21.

    Article  CAS  Google Scholar 

  42. Loudon PT, McLean CS, Martin G, Curry J, Leigh Shaw M, Hoogstraten C et al. Preclinical evaluation of DISC-GMCSF for the treatment of breast carcinoma. J Gene Med 2003; 5: 407–416.

    Article  CAS  Google Scholar 

  43. Ishii S, Hiroishi K, Eguchi J, Hiraide A, Imawari M . Dendritic cell therapy with interferon-alpha synergistically suppresses outgrowth of established tumors in a murine colorectal cancer model. Gene Therapy 2006; 13: 78–87.

    Article  CAS  Google Scholar 

  44. Liu WJ, Wang XJ, Mokhonov VV, Shi PY, Randall R, Khromykh AA . Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J Virol 2005; 79: 1934–1942.

    Article  CAS  Google Scholar 

  45. Anraku I, Mokhonov VV, Rattanasena P, Mokhonova EI, Leung J, Pijlman G et al. Kunjin replicon-based simian immunodeficiency virus gag vaccines. Vaccine 2008; 26: 3268–3276.

    Article  CAS  Google Scholar 

  46. Fayzulin R, Scholle F, Petrakova O, Frolov I, Mason PW . Evaluation of replicative capacity and genetic stability of West Nile virus replicons using highly efficient packaging cell lines. Virology 2006; 351: 196–209.

    Article  CAS  Google Scholar 

  47. Kriajevska MV, Zakharova LG, Altstein AD . Genetic instability of vaccinia virus containing artificially duplicated genome regions. Virus Res 1994; 31: 123–137.

    Article  CAS  Google Scholar 

  48. Junker U, Bohnlein E, Veres G . Genetic instability of a MoMLV-based antisense double-copy retroviral vector designed for HIV-1 gene therapy. Gene Therapy 1995; 2: 639–646.

    CAS  PubMed  Google Scholar 

  49. Lee SG, Kim DY, Hyun BH, Bae YS . Novel design architecture for genetic stability of recombinant poliovirus: the manipulation of G/C contents and their distribution patterns increases the genetic stability of inserts in a poliovirus-based RPS-Vax vector system. J Virol 2002; 76: 1649–1662.

    Article  CAS  Google Scholar 

  50. Dufresne AT, Dobrikova EY, Schmidt S, Gromeier M . Genetically stable picornavirus expression vectors with recombinant internal ribosomal entry sites. J Virol 2002; 76: 8966–8972.

    Article  CAS  Google Scholar 

  51. Raju R, Subramaniam SV, Hajjou M . Genesis of Sindbis virus by in vivo recombination of nonreplicative RNA precursors. J Virol 1995; 69: 7391–7401.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. He Y, Zhang J, Mi Z, Robbins P, Falo Jr LD . Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 2005; 174: 3808–3817.

    Article  CAS  Google Scholar 

  53. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004; 5: 141–149.

    Article  CAS  Google Scholar 

  54. McAllister A, Arbetman AE, Mandl S, Pena-Rossi C, Andino R . Recombinant yellow fever viruses are effective therapeutic vaccines for treatment of murine experimental solid tumors and pulmonary metastases. J Virol 2000; 74: 9197–9205.

    Article  CAS  Google Scholar 

  55. Gardner JP, Frolov I, Perri S, Ji Y, MacKichan ML, zur Megede J et al. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J Virol 2000; 74: 11849–11857.

    Article  CAS  Google Scholar 

  56. Scheel B, Braedel S, Probst J, Carralot JP, Wagner H, Schild H et al. Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 2004; 34: 537–547.

    Article  CAS  Google Scholar 

  57. Dietrich A, Becherer L, Brinckmann U, Hauss J, Liebert UG, Gutz A et al. Particle-mediated cytokine gene therapy leads to antitumor and antimetastatic effects in mouse carcinoma models. Cancer Biother Radiopharm 2006; 21: 333–341.

    Article  CAS  Google Scholar 

  58. McCray AN, Ugen KE, Muthumani K, Kim JJ, Weiner DB, Heller R . Complete regression of established subcutaneous B16 murine melanoma tumors after delivery of an HIV-1 Vpr-expressing plasmid by in vivo electroporation. Mol Ther 2006; 14: 647–655.

    Article  CAS  Google Scholar 

  59. Shanker A, Sayers T . Sensitizing tumor cells to immune-mediated cytotoxicity. Adv Exp Med Biol 2007; 601: 163–171.

    Article  Google Scholar 

  60. Breckpot K, Corthals J, Bonehill A, Michiels A, Tuyaerts S, Aerts C et al. Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response. J Leukoc Biol 2005; 78: 898–908.

    Article  CAS  Google Scholar 

  61. Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P et al. Melanoma differentiation associated gene-7 (mda-7)/IL-24: a ‘magic bullet’ for cancer therapy? Expert Opin Biol Ther 2007; 7: 577–586.

    Article  CAS  Google Scholar 

  62. Varnavski AN, Khromykh AA . Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes. Virology 1999; 255: 366–375.

    Article  CAS  Google Scholar 

  63. Anraku I, Harvey TJ, Linedale R, Gardner J, Harrich D, Suhrbier A et al. Kunjin virus replicon vaccine vectors induce protective CD8+ T-cell immunity. J Virol 2002; 76: 3791–3799.

    Article  CAS  Google Scholar 

  64. Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA . Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 1997; 71: 6650–6661.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Macdonald J, Tonry J, Hall RA, Williams B, Palacios G, Ashok MS et al. NS1 protein secretion during the acute phase of West Nile virus infection. J Virol 2005; 79: 13924–13933.

    Article  CAS  Google Scholar 

  66. Naparstek E, Pierce J, Metcalf D, Shadduck R, Ihle J, Leder A et al. Induction of growth alterations in factor-dependent hematopoietic progenitor cell lines by cocultivation with irradiated bone marrow stromal cell lines. Blood 1986; 67: 1395–1403.

    CAS  PubMed  Google Scholar 

  67. Antalis TM, La Linn M, Donnan K, Mateo L, Gardner J, Dickinson JL et al. The serine proteinase inhibitor (serpin) plasminogen activation inhibitor type 2 protects against viral cytopathic effects by constitutive interferon alpha/beta priming. J Exp Med 1998; 187: 1799–1811.

    Article  CAS  Google Scholar 

  68. Le TT, Drane D, Malliaros J, Cox JC, Rothel L, Pearse M et al. Cytotoxic T cell polyepitope vaccines delivered by ISCOMs. Vaccine 2001; 19: 4669–4675.

    Article  CAS  Google Scholar 

  69. Arase N, Arase H, Hirano S, Yokosuka T, Sakurai D, Saito T . IgE-mediated activation of NK cells through Fc gamma RIII. J Immunol 2003; 170: 3054–3058.

    Article  CAS  Google Scholar 

  70. Mogal A, Abdulkadir SA . Effects of histone deacetylase inhibitor (HDACi); trichostatin-A (TSA) on the expression of housekeeping genes. Mol Cell Probes 2006; 20: 81–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a Development Grant from the NH&MRC Australia, and a Commercial Ready Grant from AusIndustry, Australia. Diem Hoang-Le, Leonie Smeenk, and Itaru Anraku should be considered joint first authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Suhrbier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoang-Le, D., Smeenk, L., Anraku, I. et al. A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy. Gene Ther 16, 190–199 (2009). https://doi.org/10.1038/gt.2008.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.169

Keywords

This article is cited by

Search

Quick links