Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antigen-specific humoral tolerance or immune augmentation induced by intramuscular delivery of adeno-associated viruses encoding CTLA4-Ig-antigen fusion molecules

Abstract

This study initially sought to investigate the immunostimulatory properties of recombinant adeno-associated virus (rAAV) with a view to developing a genetic vaccine for malaria using muscle as a target tissue. To augment humoral immunity, the AAV-encoded antigen was genetically fused with CTLA4-Ig, a recombinant molecule that binds B7 costimulatory molecules. At 109 vg, CTLA4-Ig fusion promoted the humoral immune response 100-fold and was dependent on CTLA4-Ig binding with B7 costimulatory molecules, confirming plasmid DNA models using this strategy. In distinct contrast, 1012–1013 vg of rAAV1 specifically induced long-lived humoral tolerance through a mechanism that is independent of CTLA4-Ig binding with B7. This finding was unexpected, as rAAV delivery to muscle, unlike liver, has shown that this tissue provides a highly immunogenic environment for induction of humoral immunity against rAAV transgene products. An additional unpredicted consequence of antigen fusion with CTLA4-Ig was the enhancement of antigen expression by approximately one log, an effect mapped to the hinge and Fc domain of IgG1, but not involving antigen dimerization or the neonatal Fc receptor. Collectively, these findings significantly advance the potential of rAAV both as a vaccine or immunotherapeutic platform for the induction of antigen-specific humoral immunity or tolerance and as a gene therapeutic delivery system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Xiang Z, Gao G, Reyes-Sandoval A, Cohen CJ, Li Y, Bergelson JM et al. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J Virol 2002; 76: 2667–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dobrzynski E, Herzog RW . Tolerance induction by viral in vivo gene transfer. Clin Med Res 2005; 3: 234–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dullaers M, Thielemans K . From pathogen to medicine: HIV-1-derived lentiviral vectors as vehicles for dendritic cell based cancer immunotherapy. J Gene Med 2006; 8: 3–17.

    Article  CAS  PubMed  Google Scholar 

  4. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della VP et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 2007; 110: 4144–4152.

    Article  CAS  PubMed  Google Scholar 

  5. Cerullo V, McCormack W, Seiler M, Mane V, Cela R, Clarke C et al. Antigen-specific tolerance of human alpha1-antitrypsin induced by helper-dependent adenovirus. Hum Gene Ther 2007; 18: 1215–1224.

    Article  CAS  PubMed  Google Scholar 

  6. Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 1996; 93: 14082–14087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997; 3: 306–312.

    Article  CAS  PubMed  Google Scholar 

  9. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998; 72: 4212–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaiss AK, Muruve DA . Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Therapy 2008; 15: 808–816.

    Article  CAS  PubMed  Google Scholar 

  11. Choi VW, McCarty DM, Samulski RJ . AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther 2005; 5: 299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manning WC, Paliard X, Zhou S, Pat BM, Lee AY, Hong K et al. Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J Virol 1997; 71: 7960–7962.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu DW, Tsao YP, Kung JT, Ding YA, Sytwu HK, Xiao X et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol 2000; 74: 2888–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xin KQ, Urabe M, Yang J, Nomiyama K, Mizukami H, Hamajima K et al. A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther 2001; 12: 1047–1061.

    Article  CAS  PubMed  Google Scholar 

  15. Johnson PR, Schnepp BC, Connell MJ, Rohne D, Robinson S, Krivulka GR et al. Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J Virol 2005; 79: 955–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xin KQ, Mizukami H, Urabe M, Toda Y, Shinoda K, Yoshida A et al. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol 2006; 80: 11899–11910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du L, He Y, Wang Y, Zhang H, Ma S, Wong CK et al. Recombinant adeno-associated virus expressing the receptor-binding domain of severe acute respiratory syndrome coronavirus S protein elicits neutralizing antibodies: Implication for developing SARS vaccines. Virology 2006; 353: 6–16.

    Article  CAS  PubMed  Google Scholar 

  18. Vandenberghe LH, Wilson JM . AAV as an immunogen. Curr Gene Therapy 2007; 7: 325–333.

    Article  CAS  Google Scholar 

  19. Sarukhan A, Soudais C, Danos O, Jooss K . Factors influencing cross-presentation of non-self antigens expressed from recombinant adeno-associated virus vectors. J Gene Med 2001; 3: 260–270.

    Article  CAS  PubMed  Google Scholar 

  20. Herzog RW, Hagstrom JM, Kung S, Tai SJ, Wilson JM, Fisher KJ et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94: 5804–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herzog RW, Yang EY, Couto LB, Hagstrom JN, Elwell D, Fields PA et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med 1999; 5: 56–63.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Cao O, Swalm B, Dobrzynski E, Mingozzi F, Herzog RW . Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Therapy 2005; 12: 1453–1464.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Dobrzynski E, Schlachterman A, Cao O, Herzog RW . Systemic protein delivery by muscle-gene transfer is limited by a local immune response. Blood 2005; 105: 4226–4234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Cherel Y, Casadevall N et al. Autoimmune anemia in macaques following erythropoietin gene therapy. Blood 2004; 103: 3303–3304.

    Article  CAS  PubMed  Google Scholar 

  25. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  26. Logan GJ, Wang L, Zheng M, Cunningham SC, Coppel RL, Alexander IE . AAV vectors encoding malarial antigens stimulate antigen-specific immunity but do not protect from parasite infection. Vaccine 2007; 25: 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  27. Salomon B, Bluestone JA . Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001; 19: 225–252.

    Article  CAS  PubMed  Google Scholar 

  28. Bluestone JA, St Clair EW, Turka LA . CTLA4Ig: bridging the basic immunology with clinical application. Immunity 2006; 24: 233–238.

    Article  CAS  PubMed  Google Scholar 

  29. Boyle JS, Brady JL, Lew AM . Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 1998; 392: 408–411.

    Article  CAS  PubMed  Google Scholar 

  30. Deliyannis G, Boyle JS, Brady JL, Brown LE, Lew AM . A fusion DNA vaccine that targets antigen-presenting cells increases protection from viral challenge. Proc Natl Acad Sci USA 2000; 97: 6676–6680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tachedjian M, Boyle JS, Lew AM, Horvatic B, Scheerlinck JP, Tennent JM et al. Gene gun immunization in a preclinical model is enhanced by B7 targeting. Vaccine 2003; 21: 2900–2905.

    Article  CAS  PubMed  Google Scholar 

  32. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002; 3: 1097–1101.

    Article  CAS  PubMed  Google Scholar 

  33. Dresser DW, Mitchison NA . The mechanism of immunological paralysis. Adv Immunol 1968; 8: 129–181.

    Article  CAS  PubMed  Google Scholar 

  34. Larche M, Wraith DC . Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med 2005; 11: S69–S76.

    Article  CAS  PubMed  Google Scholar 

  35. McDevitt H . Specific antigen vaccination to treat autoimmune disease. Proc Natl Acad Sci USA 2004; 101: 14627–14630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao G, Lebherz C, Weiner DJ, Grant R, Calcedo R, McCullough B et al. Erythropoietin gene therapy leads to autoimmune anemia in macaques. Blood 2004; 103: 3300–3302.

    Article  CAS  PubMed  Google Scholar 

  37. Kim JK, Firan M, Radu CG, Kim CH, Ghetie V, Ward ES . Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur J Immunol 1999; 29: 2819–2825.

    Article  CAS  PubMed  Google Scholar 

  38. Vaccaro C, Zhou J, Ober RJ, Ward ES . Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 2005; 23: 1283–1288.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang TP, Jin DY, Wardrop III RM, Gui T, Maile R, Frelinger JA et al. Transgene expression levels and kinetics determine risk of humoral immune response modeled in factor IX knockout and missense mutant mice. Gene Therapy 2007; 14: 429–440.

    Article  CAS  PubMed  Google Scholar 

  40. Cohn EF, Zhuo J, Kelly ME, Chao HJ . Efficient induction of immune tolerance to coagulation factor IX following direct intramuscular gene transfer. J Thromb Haemost 2007; 5: 1227–1236.

    Article  CAS  PubMed  Google Scholar 

  41. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1: 405–413.

    Article  CAS  PubMed  Google Scholar 

  42. Krummel MF, Allison JP . CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995; 182: 459–465.

    Article  CAS  PubMed  Google Scholar 

  43. Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 2004; 20: 563–575.

    Article  CAS  PubMed  Google Scholar 

  44. Chinen J, Davis J, De Ravin SS, Hay BN, Hsu AP, Linton GF et al. Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency. Blood 2007; 110: 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zambidis ET, Scott DW . Epitope-specific tolerance induction with an engineered immunoglobulin. Proc Natl Acad Sci USA 1996; 93: 5019–5024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Melo ME, Qian J, El Amine M, Agarwal RK, Soukhareva N, Kang Y et al. Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J Immunol 2002; 168: 4788–4795.

    Article  CAS  PubMed  Google Scholar 

  47. Lei TC, Scott DW . Induction of tolerance to factor VIII inhibitors by gene therapy with immunodominant A2 and C2 domains presented by B cells as Ig fusion proteins. Blood 2005; 105: 4865–4870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reitan SK, Hannestad K . Immunoglobulin heavy chain constant regions regulate immunity and tolerance to idiotypes of antibody variable regions. Proc Natl Acad Sci USA 2002; 99: 7588–7593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Steinman RM, Hawiger D, Nussenzweig MC . Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685–711.

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Xie J, Lu H, Chen L, Hauck B, Samulski RJ et al. Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction. Proc Natl Acad Sci USA 2007; 104: 13104–13109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thornhill SI, Schambach A, Howe SJ, Ulaganathan M, Grassman E, Williams D et al. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 2008; 16: 590–598.

    Article  CAS  PubMed  Google Scholar 

  52. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  PubMed  Google Scholar 

  53. Jainchill JL, Aaronson SA, Todaro GJ . Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. J Virol 1969; 4: 549–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gorman C . High efficiency gene transfer into mammalian cells. In: Glover DM (ed). DNA Cloning. IRL Press: Oxford, Washington, DC, 1985, pp 143–165.

    Google Scholar 

  55. Kedzierski L, Black CG, Coppel RL . Characterization of the merozoite surface protein 4/5 gene of Plasmodium berghei and Plasmodium yoelii. Mol Biochem Parasitol 2000; 105: 137–147.

    Article  CAS  PubMed  Google Scholar 

  56. Zolotukhin S, Potter M, Hauswirth WW, Guy J, Muzyczka N . A ‘humanized’ green fluorescent protein cDNA adapted for high- level expression in mammalian cells. J Virol 1996; 70: 4646–4654.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Peach RJ, Bajorath J, Brady W, Leytze G, Greene J, Naemura J et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med 1994; 180: 2049–2058.

    Article  CAS  PubMed  Google Scholar 

  58. Morton PA, Fu XT, Stewart JA, Giacoletto KS, White SL, Leysath CE et al. Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). J Immunol 1996; 156: 1047–1054.

    CAS  PubMed  Google Scholar 

  59. Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ . The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci USA 1969; 63: 78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim JK, Tsen MF, Ghetie V, Ward ES . Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur J Immunol 1994; 24: 542–548.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Christine Smyth for her valuable expertize in flow cytometry and Ms Margot Latham for assistance in manuscript preparation. Samantha L Ginn is the recipient of a fellowship honoring the memory of Noel Dowling. This work was supported by a grant (477101) from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I E Alexander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, G., Wang, L., Zheng, M. et al. Antigen-specific humoral tolerance or immune augmentation induced by intramuscular delivery of adeno-associated viruses encoding CTLA4-Ig-antigen fusion molecules. Gene Ther 16, 200–210 (2009). https://doi.org/10.1038/gt.2008.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.168

Keywords

This article is cited by

Search

Quick links